Download Free Frobenius And Separable Functors For Generalized Module Categories And Nonlinear Equations Book in PDF and EPUB Free Download. You can read online Frobenius And Separable Functors For Generalized Module Categories And Nonlinear Equations and write the review.

Doi-Koppinen Hopf modules and entwined modules unify various kinds of modules that have been intensively studied over the past decades, such as Hopf modules, graded modules, Yetter-Drinfeld modules. The book presents a unified theory, with focus on categorical concepts generalizing the notions of separable and Frobenius algebras, and discussing relations with smash products, Galois theory and descent theory. Each chapter of Part II is devoted to a particular nonlinear equation. The exposé is organized in such a way that the analogies between the four are clear: the quantum Yang-Baxter equation is related to Yetter-Drinfeld modules, the pentagon equation to Hopf modules, and the Long equation to Long dimodules. The Frobenius-separability equation provides a new viewpoint to Frobenius and separable algebras.
Doi-Koppinen Hopf modules and entwined modules unify various kinds of modules that have been intensively studied over the past decades, such as Hopf modules, graded modules, Yetter-Drinfeld modules. The book presents a unified theory, with focus on categorical concepts generalizing the notions of separable and Frobenius algebras, and discussing relations with smash products, Galois theory and descent theory. Each chapter of Part II is devoted to a particular nonlinear equation. The expos is organized in such a way that the analogies between the four are clear: the quantum Yang-Baxter equation is related to Yetter-Drinfeld modules, the pentagon equation to Hopf modules, and the Long equation to Long dimodules. The Frobenius-separability equation provides a new viewpoint to Frobenius and separable algebras.
Phase transformations in solids typically lead to surprising mechanical behaviour with far reaching technological applications. The mathematical modeling of these transformations in the late 80s initiated a new field of research in applied mathematics, often referred to as mathematical materials science, with deep connections to the calculus of variations and the theory of partial differential equations. This volume gives a brief introduction to the essential physical background, in particular for shape memory alloys and a special class of polymers (nematic elastomers). Then the underlying mathematical concepts are presented with a strong emphasis on the importance of quasiconvex hulls of sets for experiments, analytical approaches, and numerical simulations.
This volume presents a collection of courses introducing the reader to the recent progress with attention being paid to laying solid grounds and developing various basic tools. It presents new results on phase transitions for gradient lattice models.
Extending Structures: Fundamentals and Applications treats the extending structures (ES) problem in the context of groups, Lie/Leibniz algebras, associative algebras and Poisson/Jacobi algebras. This concisely written monograph offers the reader an incursion into the extending structures problem which provides a common ground for studying both the extension problem and the factorization problem. Features Provides a unified approach to the extension problem and the factorization problem Introduces the classifying complements problem as a sort of converse of the factorization problem; and in the case of groups it leads to a theoretical formula for computing the number of types of isomorphisms of all groups of finite order that arise from a minimal set of data Describes a way of classifying a certain class of finite Lie/Leibniz/Poisson/Jacobi/associative algebras etc. using flag structures Introduces new (non)abelian cohomological objects for all of the aforementioned categories As an application to the approach used for dealing with the classification part of the ES problem, the Galois groups associated with extensions of Lie algebras and associative algebras are described
Starting in the middle of the 80s, there has been a growing and fruitful interaction between algebraic geometry and certain areas of theoretical high-energy physics, especially the various versions of string theory. Physical heuristics have provided inspiration for new mathematical definitions (such as that of Gromov-Witten invariants) leading in turn to the solution of problems in enumerative geometry. Conversely, the availability of mathematically rigorous definitions and theorems has benefited the physics research by providing the required evidence in fields where experimental testing seems problematic. The aim of this volume, a result of the CIME Summer School held in Cetraro, Italy, in 2005, is to cover part of the most recent and interesting findings in this subject.
Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation.