Download Free Friction And Wear Of Polymers At Cryogenic Temperatures Book in PDF and EPUB Free Download. You can read online Friction And Wear Of Polymers At Cryogenic Temperatures and write the review.

Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.
Providing a useful summary of current knowledge on the friction and wear properties of composite materials, this book fills the gap between publications on fundamental principles of tribology and those on the friction and wear behavior of metals and polymers. Detailed coverage is given of: the fundamental aspects of tribology in general and polymer composites in particular; the effects of the microstructure of composites on friction and wear behavior under different external loading conditions; and the problem of the control of friction and wear behavior in practical situations. Although emphasis is on polymer composites associated with bearing-type applications, part of the book is also devoted to the friction and wear of metal-based composites and rubber compounds. The data are represented in the form of 277 figures, diagrams and photographs, and 68 tables. The author index covers more than 670 references, and the subject index more than 1,000 keywords.The book will be of particular interest to: those involved in research on some aspects of polymer composites tribology (material scientists, physical chemists, mechanical engineers); those wishing to learn more methods for solving practical friction or wear problems (designers, engineers and technologists in industries, dealing with selection, reprocessing and application of polymer engineering materials); and teachers and students at universities.
Polymers and polymer composites have been increasinqly used in place of metals for various industries; namely, aerospace, automotive, bio-medical, computer, electrophotography, fiber, and rubber tire. Thus, an understanding of the interactions between polymers and between a polymer and a rigid counterface can enhance the applications of polymers under various environments. In meet ing this need, polymer tribology has evolved to deal with friction, lubrication and wear of polymeric materials and to answer some of the problems related to polymer-polymer interactions or oolymer rigid body interactions. The purpose of this first International Symposium was to introduce advances in studies of polymer friction and wear, especially in Britain and the U.S.S.R. Most earlier studies of the Fifties were stimulated by the growth of rubber tire industries. Continuous research through the Sixties has broadened the base to include other polymers such as nylon, polyolefins, and poly tetra fluoroethylene, or PTFE. However, much of this work was published in engineering or physics journals and rarely in chemistry journals; presumably, the latter have always considered the work to be too applied or too irrelevant. Not until recent years have chemists started to discover words such as tribo-chemistry or mechano chemistry and gradually become aware of an indispensable role in this field of polymer tribology. Thus, we were hoping to bring the technology up to date during this SympOSium, especially to the majority of participants, polymer chemists by training.
This handbook is a collection of authoritative information in the new and expanding field of polymer tribology. It brings together various research topics in the field of polymer tribology in a single volume, and provides relevant data in polymer tribology for research and industrial applications.The book's chapters are written by active, world-renowned researchers in the field. Subjects covered in this book range from the fundamentals of polymer tribology to highly applied topics such as machine element design (bearing and gears), hip prosthetic and microsystems applications.Readers in the field of tribology, in general, and polymer tribology, in particular, will find it very useful as it covers nearly all aspects of polymer tribology. Academics creating new courses based on polymer tribology will also find this book's comprehensive coverage valuable. Researchers will find this book a ready source of the state-of-the-art in the field of polymer tribology.
This book deals with the new and now-expanding field of friction, wear, and other surface-related mechanical phenomena for polymers. Polymers have been used in various forms such as bulk, films, and composites in applications where their friction, wear resistance, and other surface-related properties have been effectively utilized. There are also many examples in which polymers have performed extremely well, such as in tyres, shoes, brakes, gears, bearings, small moving parts in electronics and MEMS, cosmetics/hair products, and artificial human joints. Around the world, much research is currently being undertaken to develop new polymers, in different forms, for further enhancing tribological performance and for finding novel applications. Keeping in view the importance of tribology of polymers for research and technology as well as the vast literature that is now available in research papers and review articles, this timely book brings together a wealth of research data for an understanding of the basic principles of the subject./a
This book deals with the new and now-expanding field of friction, wear, and other surface-related mechanical phenomena for polymers. Polymers have been used in various forms such as bulk, films, and composites in applications where their friction, wear resistance, and other surface-related properties have been effectively utilized. There are also many examples in which polymers have performed extremely well, such as in tyres, shoes, brakes, gears, bearings, small moving parts in electronics and MEMS, cosmetics/hair products, and artificial human joints. Around the world, much research is currently being undertaken to develop new polymers, in different forms, for further enhancing tribological performance and for finding novel applications. Keeping in view the importance of tribology of polymers for research and technology as well as the vast literature that is now available in research papers and review articles, this timely book brings together a wealth of research data for an understanding of the basic principles of the subject.
This book contains the proceedings of the 16th ICEC/ICMC Conference, held in Kitakyushu, Japan, on 20th-24th May 1996. The Proceedings are presented in three volumes containing a total of 476 papers from 1484 authors. The proceedings covers the main areas of: Large Scale Refrigeration. Cryocoolers. Cryogenic Engineering. Space Cryogenics. Application of Superconductivity. Oxide Superconductors. Metallic Superconductors. Metallic Materials. Non Metallic Materials.In addition there are seven Plenary Lectures covering such diverse topics as commercialization of high-Tc superconductors, the continuing development of the Maglev system in Japan, and the Large Hadron Collider project. The Proceedings comprise an excellent and up-to-date summary of research and development in the fields of Cryogenics and Superconductivity.
Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites combines fundamental knowledge with the latest findings in the area of polymer tribology. From testing of property-related mechanisms to prediction of wear using artificial neural networks, the book explores all relevant polymer types, including elastomers, epoxy-based, nylon, and more while also discussing their different types of reinforcement, such as particulates, short fibers, natural fibers, and beyond. New developments in sustainable materials, environmental effects, nanoscaled fillers, and self-lubrication are each discussed, as are applications of these materials, guidelines for when to use certain polymer systems, and functional groups of polymers. Experimental methods and modeling and prediction techniques are also outlined. The tribology of graphene-based, biodegradable, hybrid nanofiller/polymer nanocomposites and other types of polymers is discussed at length. - Synthesizes the latest cutting-edge research in the tribological behaviors and applications of polymeric materials - Covers all relevant polymer types and concepts, including elastomers and natural fibers, different types of reinforcement materials, sustainable materials, interfacial modifiers and the environmental effects of self-lubrication - Outlines modeling techniques and how filler-matrix pairings and other approaches can control wear mechanisms