Download Free Fresnel Zones In Wireless Links Zone Plate Lenses And Antennas Book in PDF and EPUB Free Download. You can read online Fresnel Zones In Wireless Links Zone Plate Lenses And Antennas and write the review.

Whether you are an experienced electromagnetics specialist or a newcomer to the field, whether you need practical design guidelines or a clear and concise exposition of the fundamentals, you'll find this book invaluable. Written by an acknowledged expert, the volume includes a detailed description of the application of Fresnel zones to microwave wireless communication links as well as a comprehensive description of the state-of-the-art in newly created zone plate lens and antenna technologies. It also contains an overview of the basic electromagnetic equations for time harmonic fields, and a thorough treatment of the Fresnel-Kirchoff diffraction theory.
A guide to the theory and recent development in the medical use of antenna technology Antenna and Sensor Technologies in Modern Medical Applications offers a comprehensive review of the theoretical background, design, and the latest developments in the application of antenna technology. Written by two experts in the field, the book presents the most recent research in the burgeoning field of wireless medical telemetry and sensing that covers both wearable and implantable antenna and sensor technologies. The authors review the integrated devices that include various types of sensors wired within a wearable garment that can be paired with external devices. The text covers important developments in sensor-integrated clothing that are synonymous with athletic apparel with built-in electronics. Information on implantable devices is also covered. The book explores technologies that utilize both inductive coupling and far field propagation. These include minimally invasive microwave ablation antennas, wireless targeted drug delivery, and much more. This important book: Covers recent developments in wireless medical telemetry Reviews the theory and design of in vitro/in vivo testing Explores emerging technologies in 2D and 3D printing of antenna/sensor fabrication Includes a chapter with an annotated list of the most comprehensive and important references in the field Written for students of engineering and antenna and sensor engineers, Antenna and Sensor Technologies in Modern Medical Applications is an essential guide to understanding human body interaction with antennas and sensors.
Antennas represent a critical technology in any of these wireless systems. Not only do they directly affect the received power of the system, they are also typically the largest and most visible part. Recently, the need for low-cost, low-profile, and lightweight antenna in the frequency range of the microwave/millimeter wave/THz band has regained momentum. "Basic Principles of Fresnel Antenna Arrays" provides us a with the basics of the various Fresnel Antenna approaches, in order to achieve low-cost, low-profile, and lightweight antenna in the microwave/millimeter wave band. A potential solution of the antenna problem lies in using lens technology in an array. The Fresnel zone plate lens (FZPL) antenna is in particular an interesting candidate for the array element. The limiting focusing properties of FZPL including subwave length focus are described in detail. The book further presents a novel hexagonal FZPL antenna which can be more effectively packed in an array due to its shape. Before considering the hexagonal FZPL antenna in an array, the authors investigate two ideas, described as methods to potentially improve the radiation characteristics. The first idea is to change the reference phase of the Fresnel zone radii - a novel free parameter in the usual design of zone plate’s lenses and antennas. To further improve the radiation characteristics of the hexagonal FZPL antenna, a technique involving Fresnel zone rotation is investigated. The book is of interest for designers of optical systems because, taking scaling effects into account, the characteristics of diffractive quasioptical elements are valid for diffractive focusing elements of integrated optics.
Written by leading experts in the field, this book is a research monograph on Fresnel zone antennas. Readers will find a wealth of novel antenna configurations, first-hand experimental results, and a large number of equations.
Antennas and propagation are of fundamental importance to the coverage, capacity and quality of all wireless communication systems. This book provides a solid grounding in antennas and propagation, covering terrestrial and satellite radio systems in both mobile and fixed contexts. Building on the highly successful first edition, this fully updated text features significant new material and brand new exercises and supplementary materials to support course tutors. A vital source of information for practising and aspiring wireless communication engineers as well as for students at postgraduate and senior undergraduate levels, this book provides a fundamental grounding in the principles of antennas and propagation without excessive recourse to mathematics. It also equips the reader with practical prediction techniques for the design and analysis of a very wide range of common wireless communication systems. Including: Overview of the fundamental electromagnetic principles underlying propagation and antennas. Basic concepts of antennas and their application to specific wireless systems. Propagation measurement, modelling and prediction for fixed links, macrocells, microcells, picocells and megacells Narrowband and wideband channel modelling and the effect of the channel on communication system performance. Methods that overcome and transform channel impairments to enhance performance using diversity, adaptive antennas and equalisers. Key second edition updates: New chapters on Antennas for Mobile Systems and Channel Measurements for Mobile Radio Systems. Coverage of new technologies, including MIMO antenna systems, Ultra Wideband (UWB) and the OFDM technology used in Wi-Fi and WiMax systems. Many new propagation models for macrocells, microcells and picocells. Fully revised and expanded end-of-chapter exercises. The Solutions Manual can be requested from www.wiley.com/go/saunders_antennas_2e
A practical book written for engineers who design and use antennas The author has many years of hands on experience designing antennas that were used in such applications as the Venus and Mars missions of NASA The book covers all important topics of modern antenna design for communications Numerical methods will be included but only as much as are needed for practical applications
In the high frequency world, the passive technologies required to realize RF and microwave functionality present distinctive challenges. SAW filters, dielectric resonators, MEMS, and waveguide do not have counterparts in the low frequency or digital environment. Even when conventional lumped components can be used in high frequency applications, their behavior does not resemble that observed at lower frequencies. RF and Microwave Passive and Active Technologies provides detailed information about a wide range of component technologies used in modern RF and microwave systems. Updated chapters include new material on such technologies as MEMS, device packaging, surface acoustic wave (SAW) filters, bipolar junction and heterojunction transistors, and high mobility electron transistors (HMETs). The book also features a completely rewritten section on wide bandgap transistors.
An introduction to RF propagation that spans all wireless applications This book provides readers with a solid understanding of the concepts involved in the propagation of electromagnetic waves and of the commonly used modeling techniques. While many books cover RF propagation, most are geared to cellular telephone systems and, therefore, are limited in scope. This title is comprehensive-it treats the growing number of wireless applications that range well beyond the mobile telecommunications industry, including radar and satellite communications. The author's straightforward, clear style makes it easy for readers to gain the necessary background in electromagnetics, communication theory, and probability, so they can advance to propagation models for near-earth, indoor, and earth-space propagation. Critical topics that readers would otherwise have to search a number of resources to find are included: * RF safety chapter provides a concise presentation of FCC recommendations, including application examples, and prepares readers to work with real-world propagating systems * Antenna chapter provides an introduction to a wide variety of antennas and techniques for antenna analysis, including a detailed treatment of antenna polarization and axial ratio; the chapter contains a set of curves that permit readers to estimate polarization loss due to axial ratio mismatch between transmitting and receiving antennas without performing detailed calculations * Atmospheric effects chapter provides curves of typical atmospheric loss, so that expected loss can be determined easily * Rain attenuation chapter features a summary of how to apply the ITU and Crane rain models * Satellite communication chapter provides the details of earth-space propagation analysis including rain attenuation, atmospheric absorption, path length determination and noise temperature determination Examples of widely used models provide all the details and information needed to allow readers to apply the models with confidence. References, provided throughout the book, enable readers to explore particular topics in greater depth. Additionally, an accompanying Wiley ftp site provides supporting MathCad files for select figures in the book. With its emphasis on fundamentals, detailed examples, and comprehensive coverage of models and applications, this is an excellent text for upper-level undergraduate or graduate students, or for the practicing engineer who needs to develop an understanding of propagation phenomena.
Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propagation, and antenna analysis and design Discusses industrial standard design software tools, and antenna measurement equipment, facilities and techniques Covers electrically small antennas, mobile antennas, UWB antennas and new materials for antennas Also discusses reconfigurable antennas, RFID antennas, Wide-band and multi-band antennas, radar antennas, and MIMO antennas Design examples of various antennas are provided Written in a practical and concise manner by authors who are experts in antenna design, with experience from both academia and industry This book will be an invaluable resource for engineers and designers working in RF engineering, radar and radio communications, seeking a comprehensive and practical introduction to the basics of antenna design. The book can also be used as a textbook for advanced students entering a profession in this field.
This book presents the technology of millimetre waves and Terahertz (THz) antennas. It highlights the importance of moderate and high-gain aperture antennas as key devices for establishing point-to-point and point-to-multipoint radio links for far-field and near-field applications, such as high data-rate communications, intelligent transport, security imaging, exploration and surveillance systems. The book provides a comprehensive overview of the key antenna technologies developed for the mm wave and THz domains, including established ones – such as integrated lens antennas, advanced 2D and 3D horn antennas, transmit and reflect arrays, and Fabry-Perot antennas – as well as emerging metasurface antennas for near-field and far-field applications. It describes the pros and cons of each antenna technology in comparison with other available solutions, a discussion supplemented by practical examples illustrating the step-by-step implementation procedures for each antenna type. The measurement techniques available at these frequency ranges are also presented to close the loop of the antenna development cycle. In closing, the book outlines future trends in various antenna technologies, paving the way for further developments. Presenting content originating from the five-year ESF research networking program ‘Newfocus’ and co-authored by the most active and highly cited research groups in the domain of mm- and sub-mm-wave antenna technologies, the book offers a valuable guide for researchers and engineers in both industry and academia.