Download Free Frequency And Time Domain Techniques For Control Loop Performance Assessment Book in PDF and EPUB Free Download. You can read online Frequency And Time Domain Techniques For Control Loop Performance Assessment and write the review.

This book presents a comprehensive review of currently available Control Performance Assessment methods. It covers a broad range of classical and modern methods, with a main focus on assessment practice, and is intended to help practitioners learn and properly perform control assessment in the industrial reality. Further, it offers an educational guide for control engineers, who are currently in high demand in the industry. The book consists of three main parts. Firstly, a comprehensive review of available approaches is presented and discussed. The classical canon methods are extended with a discussion of nonlinear and complex alternative measures using non-Gaussian statistics, persistence and fractional calculations. Secondly, the methods’ applicability aspects are visualized with the aid of computer simulations, covering the most popular control philosophies used in the process industry. Lastly, a critical review of the methods discussed, on the basis of real-world industrial examples, rounds out the coverage.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies. . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for widerand rapid dissemination. Benchmarking is a technique first applied by Rank Xerox in the late 1970s for business processes. As a subject in the commercial arena, benchmarking thrives with, for example, a European Benchmarking Forum. It has taken rather longer for benchmarking to make the transfer to the technical domain and even now the subject is making a slow headway. Akey research step in this direction was taken by Harris (1989) who used minimum variance control as a benchmark for controller loop assessment. This contribution opened up the area and a significant specialist literature has now developed. Significant support for the methodologywas given by Honeywell who have controller assessment routines in their process control applications software; therefore, it is timely to welcome a (first) monograph on controller performance assessment by Biao Huang and Sirish Shah to the Advances in Industrial Control series.
This book is a practical guide to the application of control benchmarking to real, complex, industrial processes. The variety of industrial case studies gives the benchmarking ideas presented a robust real-world attitude. The book deals with control engineering principles and economic and management aspects of benchmarking. It shows the reader how to avoid common problems in benchmarking and details the benefits of effective benchmarking.
The seven volumes LNCS 12249-12255 constitute the refereed proceedings of the 20th International Conference on Computational Science and Its Applications, ICCSA 2020, held in Cagliari, Italy, in July 2020. Due to COVID-19 pandemic the conference was organized in an online event. Computational Science is the main pillar of most of the present research, industrial and commercial applications, and plays a unique role in exploiting ICT innovative technologies. The 466 full papers and 32 short papers presented were carefully reviewed and selected from 1450 submissions. Apart from the general track, ICCSA 2020 also include 52 workshops, in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as software engineering, security, machine learning and artificial intelligence, blockchain technologies, and of applications in many fields.
Reset Control Systems addresses the analysis for reset control treating both its basic form, and some useful variations of the reset action and reset condition. The issues regarding reset control – concepts and motivation; analysis tools; and the application of design methodologies to real-world examples – are given thorough coverage. The text opens with a historical perspective which moves from the seminal work of the Clegg integrator and Horowitz FORE to more recent approaches based on impulsive/hybrid control systems and explains the motivation for reset compensation. Preliminary material is also included. The focus then turns to stability analysis for systems using techniques which account for various time- and frequency-domain criteria. The final section of the book is centered on control systems design and application. The PI+CI compensator is detailed as are a proposed frequency domain approach using quantitative feedback theory and ideas for design improvement. Design examples are given.
Proportional, Integral and Derivative feedback control (PID) is a mature technology responsible for the majority of automated decision making in the process industry. Despite the high reliance on this technology, low levels of maintenance and performance measurement are the norm in the process industry. Several analysis techniques exist for identifying oscillation, and then highlighting the root cause of the problem. Several time and frequency domain statistical techniques, as well as wavelet analysis are used to diagnose loop performance. In this study, 127 different control loops are analysed, and in depth troubleshooting is performed on a selection of 18 different control loops. The performance of flow loop F1035 is tracked through a number of different analysis techniques, highlighting the pitfalls of using only a single analysis technique. Lower order statistics and minimum variance performance analysis show that the loop is performing well. Plotting the PV-OP relationship suggests non-linear tendencies on F1035, and this is corroborated using high order statistical analysis (bicoherence). Non-linear loop behaviour is often as a result of a slip stick cycle, a sign that valve maintenance may be required. Frequency (power spectrum) analysis shows a 43 minute dominant oscillation, suggesting a low frequency disturbance affecting loop performance. Process units are typically exposed to cyclic behaviour occurring at several different frequencies, each having a different effect on the control of the process. By using a frequency based approach based on sinusoidal basis functions (ie Fourier analysis), these different frequencies get aggregated. This smudging of specific frequency information makes it difficult to pin-point the root cause, and makes the grouping of common oscillations difficult. In order to address the above issue, F1035 is analysed using othornormal wavelet basis functions. The results show that the period of oscillation is affected between day and night, with roughly a 2 minute oscillation prevalent at mid night, compared to a 100 minute oscillation at mid day. Obviously the 12 hour day-night swing is also prevalent. This information is unique to this approach. Ways of visualising changes in oscillatory behaviour using the wavelet analysis are also presented. Technical analysis of controller performance is only a small subsection of the issues that need to be considered when implementing a loop monitoring and maintenance solution. Issues such as connectivity, configuration, analysis, reporting and auditing are key in designing a workable maintenance environment for PID loop maintenance. Several packages are available commercially to assist industry in performing loop maintenance. When evaluating which package is best suited to a specific requirement, it is important to consider several different issues. The different audiences with a vested interest in loop performance require special attention in terms of reporting requirements. Visualisation of results is often more important than the physical measure of performance. Finally, the ability of a company to benchmark itself against current best practices and performance is often perceived as a major advantage. The results presented and discussed were generated using real industrial data. Information regarding suggested best practice when evaluating commercially available products is based largely on the author's personal experience in the large scale industrial installation of such a monitoring solution.
Control Performance Management in Industrial Automation provides a coherent and self-contained treatment of a group of methods and applications of burgeoning importance to the detection and solution of problems with control loops that are vital in maintaining product quality, operational safety, and efficiency of material and energy consumption in the process industries. The monograph deals with all aspects of control performance management (CPM), from controller assessment (minimum-variance-control-based and advanced methods), to detection and diagnosis of control loop problems (process non-linearities, oscillations, actuator faults), to the improvement of control performance (maintenance, re-design of loop components, automatic controller re-tuning). It provides a contribution towards the development and application of completely self-contained and automatic methodologies in the field. Moreover, within this work, many CPM tools have been developed that goes far beyond available CPM packages. Control Performance Management in Industrial Automation: · presents a comprehensive review of control performance assessment methods; · develops methods and procedures for the detection and diagnosis of the root-causes of poor performance in complex control loops; · covers important issues that arise when applying these assessment and diagnosis methods; · recommends new approaches and techniques for the optimization of control loop performance based on the results of the control performance stage; and · offers illustrative examples and industrial case studies drawn from – chemicals, building, mining, pulp and paper, mineral and metal processing industries. This book will be of interest to academic and industrial staff working on control systems design, maintenance or optimisation in all process industries.
The latest advances in process monitoring, data analysis, and control systems are increasingly useful for maintaining the safety, flexibility, and environmental compliance of industrial manufacturing operations. Focusing on continuous, multivariate processes, Chemical Process Performance Evaluation introduces statistical methods and modeling te