Download Free Free Group Rings Book in PDF and EPUB Free Download. You can read online Free Group Rings and write the review.

This book deals with some aspects of linear techniques in combinatorial group theory having their origin in the work of Wilhelm Magnus in the 1930s. The central theme is the identification and properties of those subgroups of free groups which are induced by certain ideals of the integral group rings of free groups. This subject has been developed extensively, and the author seeks to present, in contemporary style, a systematic and comprehensive account of some of its developments. Included in the book are a solution of the Fox subgroup problem and an up-to-date development of the dimension subgroup problem. Aimed at graduate students and researchers in combinatorial group theory, the book requires a familiarity with the general terminology of free groups and group rings.
to Group Rings by Cesar Polcino Milies Instituto de Matematica e Estatistica, Universidade de sao Paulo, sao Paulo, Brasil and Sudarshan K. Sehgal Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton. Canada SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A c.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-0239-7 ISBN 978-94-010-0405-3 (eBook) DOI 10.1007/978-94-010-0405-3 Printed an acid-free paper AII Rights Reserved (c) 2002 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2002 Softcover reprint ofthe hardcover Ist edition 2002 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, inc1uding photocopying, recording Of by any information storage and retrieval system, without written permis sion from the copyright owner. Contents Preface ix 1 Groups 1 1.1 Basic Concepts . . . . . . . . . . . . 1 1.2 Homomorphisms and Factor Groups 10 1.3 Abelian Groups . 18 1.4 Group Actions, p-groups and Sylow Subgroups 21 1.5 Solvable and Nilpotent Groups 27 1.6 FC Groups .
"'Highly recommended' by the Bulletin of the London Mathematical Society, this book offers a comprehensive, self-contained treatment of group rings. The subject involves the intersection of two essentially different disciplines, group theory and ring theory. The Bulletin of the American Mathematical Society hailed this treatment as 'a majestic account,' proclaiming it "encyclopedic and lucid." 1985 edition"--
A self-contained introduction is given to J. Rickard's Morita theory for derived module categories and its recent applications in representation theory of finite groups. In particular, Broué's conjecture is discussed, giving a structural explanation for relations between the p-modular character table of a finite group and that of its "p-local structure". The book is addressed to researchers or graduate students and can serve as material for a seminar. It surveys the current state of the field, and it also provides a "user's guide" to derived equivalences and tilting complexes. Results and proofs are presented in the generality needed for group theoretic applications.
Represents the proceedings of the conference on Groups, Rings and Group Rings, held July 28 - August 2, 2008, in Ubatuba, Brazil. This title contains results in active research areas in the theory of groups, group rings and algebras (including noncommutative rings), polynomial identities, Lie algebras and superalgebras.
This book is a self-contained account of the theory of classgroups of group rings. The guiding philosophy has been to describe all the basic properties of such classgroups in terms of character functions. This point of view is due to A. Frohlich and it achieves a considerable simplification and clarity over previous techniques. A main feature of the book is the introduction of the author's group logarithm, with numerous examples of its application. The main results dealt with are: Ullom's conjecture for Swan modules of p-groups; the self-duality theorem for rings of integers of tame extensions; the fixed-point theorem for determinants of group rings; the existence of Adams operations on classgroups. In addition, the author includes a number of calculations of classgroups of specific families of groups such as generalized dihedral groups, and quaternion and dihedral 2-groups. The work contained in this book should be readily accessible to any graduate student in pure mathematics who has taken a course in the representation theory of finite groups. It will also be of interest to number theorists and algebraic topologists.
This volume contains the proceedings of the International Conference on Groups, Rings, Group Rings, and Hopf Algebras, held October 2–4, 2015 at Loyola University, Chicago, IL, and the AMS Special Session on Groups, Rings, Group Rings, and Hopf Algebras, held October 3–4, 2015, at Loyola University, Chicago, IL. Both conferences were held in honor of Donald S. Passman's 75th Birthday. Centered in the area of group rings and algebras, this volume contains a mixture of cutting edge research topics in group theory, ring theory, algebras and their representations, Hopf algebras and quantum groups.
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
The aim of the lectures is to provide an introduction to recent developments in the theory of class groups and Picard groups. The techniques employed come from the three main areas: algebraic number theory, representation theory of algebras and orders, and algebraic $K$-theory.