Download Free Fracture Of Materials Under Compression Along Cracks Book in PDF and EPUB Free Download. You can read online Fracture Of Materials Under Compression Along Cracks and write the review.

This book addresses the problems of fracture mechanics of materials with cracks under the loading directed along the cracks. It considers two non-classical fracture mechanisms, namely the fracture of bodies compressed along cracks and the fracture of materials with initial (residual) stresses acting in parallel to the surfaces of cracks location, and presents new approaches (also including combined one) developed in the framework of three-dimensional linearized mechanics of deformable bodies. It then discusses the results of studies on two- and three-dimensional problems for various configurations of crack locations in isotropic and anisotropic materials, and based on these results, critically evaluates the accuracy and applicability limits of the “beam approximation” approach, which is widely used to study various problems of the fracture of bodies under compression along parallel cracks.
This book presents an analysis of eight non-classical problems of fracture and failure mechanics mainly obtained by research in the department of dynamics and stability of continuum of the S. P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine (NAS of Ukraine). It focusses on the application of the 3D (three-dimensional) theories of stability, dynamics, and statics of solid mechanics to the investigation of non-classical problems of fracture and failure mechanics.
This book presents the proceedings of the 3rd edition of the International Conference on Theoretical, Applied and Experimental Mechanics. The papers focus on all aspects of theoretical, applied and experimental mechanics, including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture mechanics, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation.
This book covers research from modern directions in solid mechanics, in particular, in the fields of mechanics of composite materials, fracture mechanics, strength of materials and structures, thermo-viscoelasticity and plasticity, mechanics of shell structures, contact mechanics, theory of wave propagation, dynamics of mechanical and hydromechanical systems. The book presents some new results in the main research directions in mechanics on which the institutions of the National Academy of Sciences of Ukraine are focused. In addition to these studies, the results of joint scientific projects of the academic institutions with universities and research institutions of Ukraine are presented. The work is dedicated to the 145th anniversary of Stepan Prokopovich Timoshenko, the world-famous scientist in the field of mechanics, the founder of the Institute of Mechanics of the National Academy of Sciences of Ukraine, one of the founders of the National Academy of Sciences of Ukraine and academic teacher with world-wide reputation with great influence on engineering education.
The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.
This is the proceedings of the 2nd International Conference on Theoretical, Applied and Experimental Mechanics that was held in Corfu, Greece, June 23-26, 2019. It presents papers focusing on all aspects of theoretical, applied and experimental mechanics, including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. The papers update the latest research in their field, carried out since the last conference in 2018. This book is suitable for engineers, students and researchers who want to obtain an up-to-date view of the recent advances in the area of mechanics.
ICTAEM_1 treated all aspects of theoretical, applied and experimental mechanics including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. During the conference special symposia covering major areas of research activity organized by members of the Scientific Advisory Board took place. ICTAEM_1 brought together the most outstanding world leaders and gave attendees the opportunity to get acquainted with the latest developments in the area of mechanics. ICTAEM_1 is a forum of university, industry and government interaction and serves in the exchange of ideas in an area of utmost scientific and technological importance.
At the present time stability theory of deformable systems has been developed into a manifold field within solid mechanics with methods, techniques and approaches of its own. We can hardly name a branch of industry or civil engineering where the results of the stability theory have not found their application. This extensive development together with engineering applications are reflected in a flurry of papers appearing in periodicals as well as in a plenty of monographs, textbooks and reference books. In so doing, overwhelming majority of researchers, con cerned with the problems of practical interest, have dealt with the loss of stability in the thin-walled structural elements. Trying to simplify solution of the problems, they have used two- and one-dimensional theories based on various auxiliary hypotheses. This activity contributed a lot to the preferential development of the stability theory of thin-walled structures and organisation of this theory into a branch of solid mechanics with its own up-to-date methods and trends, but left three-dimensional linearised theory of deformable bodies stability (TL TDBS), methods of solving and solutions of the three-dimensional stability problems themselves almost without attention. It must be emphasised that by three dimensional theories and problems in this book are meant those theories and problems which do not draw two-dimensional plate and shell and one-dimensional rod theories.
Methods and the latest results of experimental studies of the strength properties, polymorphism and metastable states of materials and substances with extremely short durations of shock-wave action are presented. The author provides a comprehensive and theoretical description of specific features of the dynamics of elastoplastic shock compression waves in relaxing media. The presentation is preceded by a detailed description of the theoretical foundations of the method and a brief discussion of the basic methods of generating and diagnosing shock waves in solids. Key Selling Features: Addresses dynamic elastic-plastic response, spallation, and shock-induced phase transformation. Provides a centralized presentation of topics of interest to the shock physics community Presents new data on the mechanism and basic patterns of sub-microsecond polymorphic transformations and phase transitions. Investigates destruction waves in shock-compressed glasses. Analyzes the behavior of highly hard brittle materials under shock-wave loading and ways to diagnose fracture.