Download Free Fracture Mechanics Of Nonhomogeneous Materials Book in PDF and EPUB Free Download. You can read online Fracture Mechanics Of Nonhomogeneous Materials and write the review.

This book perfects the theoretical system of fracture mechanics of nonhomogeneous materials through the establishment of the piecewise exponential model and expands the fracture research scope to nonhomogeneous materials containing complex interfaces through proposing the domain-independent interaction integral concept. The piecewise exponential model has overcome the problem of fracture mechanics of nonhomogeneous materials and clarified the doubt of traditional exponential models in recent 30 years. The domain-independent interaction integral method is not affected by material nonhomogeneity and discontinuity, which greatly facilitates its numerical implementation in the investigation of fracture behaviors of nonhomogeneous materials with complex interfaces.
This volume constitutes the Proceedings of the IUTAM Symposium on "Analytical and Computational Fracture Mechanics of Non-homogeneous Materials", held in Cardiff from 18th to 22nd June 2001. The Symposium was convened to address and place on record topical issues in analytical and computational aspects of the fracture of non-homogeneous materials as they are approached by specialists in mechanics, materials science and related fields. The expertise represented in the Symposium was accordingly very wide, and many of the world's greatest authorities in their respective fields participated. Given the extensive range and scale of non-homogeneous materials, it had to be focussed to enhance the quality and impact of the Symposium. The range of non-homogeneous materials was limited to those that are inhomogeneous at the macroscopic level and/or exhibit strain softening. The issues of micro to macro scaling were not excluded even within this restricted range which covered materials such as rock, concrete, ceramics and composites on the one hand, and, on the other, those metallic materials whose ductile fracture is strongly influenced by the presence of inhomogeneities. The Symposium remained focussed on fundamental research issues of practical significance. These issues have many common features among seemingly disparate non-homogeneous materials.
Mechanical responses of solid materials are governed by their material properties. The solutions for estimating and predicting the mechanical responses are extremely difficult, in particular for non-homogeneous materials. Among these, there is a special type of materials whose properties are variable only along one direction, defined as graded materials or functionally graded materials (FGMs). Examples are plant stems and bones. Artificial graded materials are widely used in mechanical engineering, chemical engineering, biological engineering, and electronic engineering. This work covers and develops boundary element methods (BEM) to investigate the properties of realistic graded materials. It is a must have for practitioners and researchers in materials science, both academic and in industry. Covers analysis of properties of graded materials. Presents solutions based methods for analysis of fracture mechanics. Presents two types of boundary element methods for layered isotropic materials and transversely isotropic materials. Written by two authors with extensive international experience in academic and private research and engineering.
This book contains the lectures of the 5th Advanced Seminar on Fracture Mechanics (ASFM 5) held at the Joint Research Centre, Ispra, on 14-18 October 1985. The series of the ASFMs is one of the two main regularly scheduled international events sponsored by the European Group on Fracture (EGF) , alternating with the European Conferences of Fracture (ECFS). Whereas ECFs are held in a different place on even years (the last. ECF6,was in Amsterdam in June 1986), ASFMs are hosted at the JRC Ispra on odd years. This establishment belonging to the Commission of the European Communities performs research work of common interest to the EC Member countries. One of the activities of the JRC-Ispra is the organization of Ispra-Courses aiming at the transfer of knowledge and the strengthening of exchanges and ties between European scientific workers. ASFMs are designed to give an advanced level treatment in selected areas of fracture mechanics. Previous ASFMs had been devoted to elastic-plastic fracture mechanics and to subcritical crack growth due to fatigue, stress corrosion and creep. In the early stages of preparation of ASFM5 it was decided to concentrate on a new theme, the fracture phenomena and fracture mechanics of non-metallic materials. Whereas fracture mechanics started with the study of glass by Griffith, its later developments centered predominantly on metallic alloys. However, in recent years non-metallic materials have found increasing uses and correspondingly efforts have been made to develop testing and prediction methods for these materials.
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
Fracture and 'slow' crack growth reflect the response of a material (i.e. its microstructure) to the conjoint actions of mechanical and chemical driving forces and are affected by temperature. There is therefore a need for quantitative understanding and modeling of the influences of chemical and thermal environments and of microstructure, in terms of the key internal and external variables, and for their incorporation into design and probabilistic implications. This text, which the author has used in a fracture mechanics course for advanced undergraduate and graduate students, is based on the work of the author's Lehigh University team whose integrative research combined fracture mechanics, surface and electrochemistry, materials science, and probability and statistics to address a range of fracture safety and durability issues on aluminum, ferrous, nickel, and titanium alloys and ceramics. Examples are included to highlight the approach and applicability of the findings in practical durability and reliability problems.
This book fulfills the need for a short, modern, introductory text on linear elastic fracture mechanics and its engineering applications. Suitable for use by engineering undergraduates, and other newcomers to the subject, it:- • Explains the main ideas underlying present day linear elastic fracture mechanics and how these have been developed. • Shows how the ideas can be used to carry out calculations answering the question 'Does this crack matter?' from the viewpoint of an engineering designer. • Provides an understanding of the basis of standard methods and software employed to carry out calculations. • Includes additional, more advanced material, where this will increase understanding of the sometimes formidable mathematics involved, and of the various simplifications and approximations used in practical applications. The author includes all the material central to an undergraduate introductory course and ends each chapter with an overview of the material covered to aid accessibility. Familiarity with the mechanical properties of metallic materials, and with the linear elastic stress analysis of uncracked bodies is assumed.
New developments in the applications of fracture mechanics to engineering problems have taken place in the last years. Composite materials have extensively been used in engineering problems. Quasi-brittle materials including concrete, cement pastes, rock, soil, etc. all benefit from these developments. Layered materials and especially thin film/substrate systems are becoming important in small volume systems used in micro and nanoelectromechancial systems (MEMS and NEMS). Nanostructured materials are being introduced in our every day life. In all these problems fracture mechanics plays a major role for the prediction of failure and safe design of materials and structures. These new challenges motivated the author to proceed with the second edition of the book. The second edition of the book contains four new chapters in addition to the ten chapters of the first edition. The fourteen chapters of the book cover the basic principles and traditional applications, as well as the latest developments of fracture mechanics as applied to problems of composite materials, thin films, nanoindentation and cementitious materials. Thus the book provides an introductory coverage of the traditional and contemporary applications of fracture mechanics in problems of utmost technological importance. With the addition of the four new chapters the book presents a comprehensive treatment of fracture mechanics. It includes the basic principles and traditional applications as well as the new frontiers of research of fracture mechanics during the last three decades in topics of contemporary importance, like composites, thin films, nanoindentation and cementitious materials. The book contains fifty example problems and more than two hundred unsolved problems. A "Solutions Manual" is available upon request for course instructors from the author.