Download Free Fracture Mechanics Of Functionally Graded Materials Book in PDF and EPUB Free Download. You can read online Fracture Mechanics Of Functionally Graded Materials and write the review.

Scientific research on functionally graded materials (FGM's) looks at functions of gradients in materials comprising thermodynamic, mechanical, chemical, optical, electromagnetic, and/or biological aspects. This collection of technical papers represents current research interests with regard to the fracture behaviour of FGM's. The papers provide a balance between theoretical, computational, and experimental techniques. It also indicates areas for increased development, such as constraint effects, full experimental characterization of engineering FGM's under static and dynamic loading, development of fracture criteria with predictive capability, multiphysics and multiscale failure considerations, and connection of research with industrial applications.
This book describes the basics and developments of the new XFEM approach to fracture analysis of composite structures and materials. It provides state of the art techniques and algorithms for fracture analysis of structures including numeric examples at the end of each chapter as well as an accompanying website which will include MATLAB resources, executables, data files, and simulation procedures of XFEM. The first reference text for the extended finite element method (XFEM) for fracture analysis of structures and materials Includes theory and applications, with worked numerical problems and solutions, and MATLAB examples on an accompanying website with further XFEM resources Provides a comprehensive overview of this new area of research, including a review of Fracture Mechanics, basic through to advanced XFEM theory, as well as current problems and applications Includes a chapter on the future developments in the field, new research areas and possible future applications of the method
This work describes the formulation and numerical implementation of both two- and three-dimensional indirect boundary element methods (for example, the fictitious load method and the displacement discontinuity method). It also provides an analysis of crack problems in elastostatic and elastodynamic fracture mechanics, and methods for evaluating weight functions for dynamic problems.
This book contains two sections: Chapters 1-7 deal with contact mechanics, and Chapters 8-13 deal with fracture mechanics. The different contributions of this book will cover the various advanced topics of research. It provides some needed background with respect to contact mechanics, fracture mechanics and the use of finite element methods in both. All the covered chapters of this book are of a theoretical and applied nature, suitable for the researchers of engineering, physics, applied mathematics and mechanics with an interest in computer simulation of contact and fracture problems.
Seven years have elapsed since Dr. Renee Ford, editor-in-chief of Materials Technology, first suggested to me to publish a book on Functionally Graded Materials (FGMs). She said that the FGM concept, then largely unknown outside of Japan and a relatively few laboratories elsewhere, would be of great interest to everyone working in the materials field because of its potentially universal applicability. There was no book about FGMs in English at that time, although the number of research papers, review articles, and FGM conference proceedings had been increasing yearly. We discussed what the book should cover, and decided it should present a comprehensive description from basic theory to the most recent applications of FGMs. This would make it useful both as an introduction to FGMs for those simply curious about what this new materials field was all about, and also as a textbook for researchers, engineers, and graduate students in various material fields. The FGM Forum in Japan generously offered to support this publication program. is very difficult for an individual author to write a book that Because it covers such a wide range of various aspects of many different materials, I invited more than 30 eminent materials scientists throughout the world, who were associated with FGM research, to contribute selected topics. I also asked several leading researchers in this field to edit selected chapters: Dr. Barry H. Rabin, then at the U. S.
This book reviews research results in the field of mechanics research. Also discussed herein are the most important areas in the mechanics of functionally graded materials and structures, including the analytical and the semi-analytical solutions of functionally graded beams, plates and shells as well as their simplified theories, fracture analysis of functionally graded materials, a micro-element method for the macro-micro scale analysis and the optimal design of functionally graded structures.
Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities. Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource.
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.