Download Free Fracture And Fatigue Control In Structures Book in PDF and EPUB Free Download. You can read online Fracture And Fatigue Control In Structures and write the review.

Emphasizes applications of fracture mechanics to prevent fracture and fatigue failures in structures, rather than the theoretical aspects of fracture mechanics. The concepts of driving force and resistance force are used to differentiate between the mathematical side and the materials side. Case studies of actual failures are new to the third edition. Annotation copyrighted by Book News, Inc., Portland, OR
Annotation An introduction for practicing engineers or students at the beginning graduate or advanced undergraduate level, emphasizing the application of fracture mechanics to preventing fracture and fatigue failures in structures, rather than the theoretical aspects of the field. The topics include stress analysis for members with cracks, resistance forces, fatigue crack initiation, and fitness for service. Among the case studies are bridges, oil tankers, and steel casings. The earlier editions were in 1977 and 1987. Annotation copyrighted by Book News, Inc., Portland, OR.
Emphasizes applications of fracture mechanics to prevent fracture and fatigue failures in structures, rather than the theoretical aspects of fracture mechanics. The concepts of driving force and resistance force are used to differentiate between the mathematical side and the materials side. Case studies of actual failures are new to the third edition. Annotation copyrighted by Book News, Inc., Portland, OR
The First African InterQuadrennial ICF Conference “AIQ-ICF2008” on Damage and Fracture Mechanics – Failure Analysis of Engineering Materials and Structures”, Algiers, Algeria, June 1–5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers.
This book provides a detailed review and summary of twenty-two case studies of fracture and fatigue in bridge structures. Its two parts cover cracks formed as a result of low fatigue resistant details, and cracks resulting from unanticipated secondary or displacement induced stresses.
In the preliminary stage of designing new structural hardware that must perform a given mission in a fluctuating load environment, there are several factors the designers should consider. Trade studies for different design configurations should be performed and, based on strength and weight considerations, among others, an optimum configuration selected. The selected design must be able to withstand the environment in question without failure. Therefore, a comprehen sive structural analysis that consists of static, dynamic, fatigue, and fracture is necessary to ensure the integrity of the structure. During the past few decades, fracture mechanics has become a necessary discipline for the solution of many structural problems. These problems include the prevention of failures resulting from preexisting cracks in the parent material, welds or that develop under cyclic loading environment during the life of the structure. The importance of fatigue and fracture in nuclear, pressure vessel, aircraft, and aerospace structural hardware cannot be overemphasized where safety is of utmost concern. This book is written for the designer and strength analyst, as well as for the material and process engineer who is concerned with the integrity of the structural hardware under load-varying environments in which fatigue and frac ture must be given special attention. The book is a result of years of both acade mic and industrial experiences that the principal author and co-authors have accumulated through their work with aircraft and aerospace structures.
"This book emphasizes the physical and practical aspects of fatigue and fracture. It covers mechanical properties of materials, differences between ductile and brittle fractures, fracture mechanics, the basics of fatigue, structural joints, high temperature failures, wear, environmentally-induced failures, and steps in the failure analysis process."--publishers website.
The professional's source . Handbooks in the Wiley Series in Mechanical Engineering Practice Handbook of Energy Systems Engineering Production and Utilization Edited by Leslie C. Wilbur Here is the essential information needed to select, compare, and evaluate energy components and systems. Handbook of Energy Systems is a rich sourcebook of reference data and formulas, performance criteria, codes and standards, and techniques used in the development and production of energy. It focuses on the major sources of energy technology: coal, hydroelectric and nuclear power, petroleum, gas, and solar energy Each section of the Handbook is a mini-primer furnishing modern methods of energy storage, conservation, and utilization, techniques for analyzing a wide range of components such as heat exchangers, pumps, fans and compressors, principles of thermodynamics, heat transfer and fluid dynamics, current energy resource data and much more. 1985 (0 471-86633-4) 1,300 pp.
Fracture in structural materials remains a vital consideration in engineering systems, affecting the reliability of machines throughout their lives. Impressive advances in both the theoretical understanding of fracture mechanisms and practical developments that offer possibilities of control have re-shaped the subject over the past four decades. The contributors to this volume, including some of the most prominent researchers in the field, give their long-range perspectives of the research on the fracture of solids and its achievements. The subjects covered in this volume include: statistics of brittle fracture, transition of fracture from brittle to ductile, mechanics and mechanisms of ductile separation of heterogenous solids, the crack tip environment in ductile fracture, and mechanisms and mechanics of fatigue. Materials considered range from the usual structural solids to composites. The chapters include both theoretical points of view and discussions of key experiments. Contributors include: from MIT, A.S. Argon, D.M. Parks; from Cambridge, M.F. Ashby; from U.C. Santa Barbara, A.G. Evans, R. McMeeking; from Glasgow, J. Hancock; from Harvard, J.W. Hutchinson, J.R. Rice; from Sheffield, K.J. Miller; from Brown, A. Needleman; from the Ecole des Mines, A. Pineau; from U.C. Berkeley, R. O. Ritchie; and from Copenhagen, V. Tvergaard.
This book presents experimental results and theoretical advances in the field of ultra-low-cycle fatigue failure of metal structures under strong earthquakes, where the dominant failure mechanism is ductile fracture. Studies on ultra-low-cycle fatigue failure of metal materials and structures have caught the interest of engineers and researchers from various disciplines, such as material, civil and mechanical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while also highlighting the importance of theoretical analysis and experimental results in the fracture evaluation of metal structures under seismic loading. Accordingly, it offers a valuable resource for undergraduate and graduate students interested in ultra-low-cycle fatigue, researchers investigating steel and aluminum structures, and structural engineers working on applications related to cyclic large plastic loading conditions.