Download Free Fractals Chaos Power Laws Book in PDF and EPUB Free Download. You can read online Fractals Chaos Power Laws and write the review.

This fascinating book explores the connections between chaos theory, physics, biology, and mathematics. Its award-winning computer graphics, optical illusions, and games illustrate the concept of self-similarity, a typical property of fractals. The author -- hailed by Publishers Weekly as a modern Lewis Carroll -- conveys memorable insights in the form of puns and puzzles. 1992 edition.
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
For students with a background in elementary algebra, this book provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia Sets and the Mandelbrot Set, power laws, and cellular automata. The book includes over 200 end-of-chapter exercises.
This text aims to bridge the gap between non-mathematical popular treatments and the distinctly mathematical publications that non- mathematicians find so difficult to penetrate. The author provides understandable derivations or explanations of many key concepts, such as Kolmogrov-Sinai entropy, dimensions, Fourier analysis, and Lyapunov exponents.
A modern up-to-date introduction for readers outside statistical physics. It puts emphasis on a clear understanding of concepts and methods and provides the tools that can be of immediate use in applications.
From triangles, rotations and power laws, to cones, curves and the dreaded calculus, Alex takes you on a journey of mathematical discovery with his signature wit and limitless enthusiasm. He sifts through over 30,000 survey submissions to uncover the world’s favourite number, and meets a mathematician who looks for universes in his garage. He attends the World Mathematical Congress in India, and visits the engineer who designed the first roller-coaster loop. Get hooked on math as Alex delves deep into humankind’s turbulent relationship with numbers, and reveals how they have shaped the world we live in.
'Gribbin takes us through the basics with his customary talent for accessibility and clarity' Sunday Times The world around us can be a complex, confusing place. Earthquakes happen without warning, stock markets fluctuate, weather forecasters seldom seem to get it right - even other people continue to baffle us. How do we make sense of it all? In fact, John Gribbin reveals, our seemingly random universe is actually built on simple laws of cause and effect that can explain why, for example, just one vehicle braking can cause a traffic jam; why wild storms result from a slight atmospheric change; even how we evolved from the most basic materials. Like a zen painting, a fractal image or the pattern on a butterfly's wings, simple elements form the bedrock of a sophisticated whole. Synthesizing chaos and complexity theory for the perplexed, Deep Simplicity brilliantly illuminates the harmony underlying our existence.
This exceptional book is concerned with the application of fractals and chaos, as well as other concepts from nonlinear dynamics to biomedical phenomena. Herein we seek to communicate the excitement being experienced by scientists upon making application of these concepts within the life sciences. Mathematical concepts are introduced using biomedical data sets and the phenomena being explained take precedence over the mathematics. In this new edition what has withstood the test of time has been updated and modernized; speculations that were not borne out have been expunged and the breakthroughs that have occurred in the intervening years are emphasized. The book provides a comprehensive overview of a nascent theory of medicine, including a new chapter on the theory of complex networks as they pertain to medicine.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 150 ready to run programs are included. New topics added to the fifth edition are Langton's ant, chaotic data communication, self-controlling feedback, differential forms and optimization, T-norms and T-conorms with applications.