Download Free Fractal Algorithm And Its Application In Rock Mechanics Book in PDF and EPUB Free Download. You can read online Fractal Algorithm And Its Application In Rock Mechanics and write the review.

This book focuses on learning and adapting nonlinear geometry tool in rock engineering through fractal theories, hypotheses, algorithm, practical understandings, and case studies. Understanding self-similarity and self-affinity is a prerequisite to the fractal model in rock mechanics. The book aims to provide a guide for the readers seeking to understand and build nonlinear model by fractal algorithm. The book is motivated by recent rapid advances in rock engineering in China including application of fractal theory, in addition to percolation theory. It is an essential reference to the most promising innovative rock engineering. Chapters are carefully developed to cover (1) new fractal algorithms (2) five engineering cases. This authored book addresses the issue with a holistic and systematic approach that utilizes fractal theory to nonlinear behavior in rock engineering. The book is written for researchers interested in rock and geological engineering as well as organizations engaged in underground energy practices.
These proceedings contain the scientific contributions presented at the 2nd Asian Rock Mechanics Symposium (ISRM 2001 - 2nd ARMS). The theme of the symposium was "Frontiers of Rock Mechanics and Sustainable Development in the 21st Century".
The theme of the 31st US Symposium on Rock Mechanics is 'Rock Mechanics contributions and challenges', having as objective the examination and quantification of the progress that has been achieved in addressing the major practical challenges facing the science of rock mechanics and mine design. The 124 papers included in the proceedings cover areas such as: experimental studies (laboratory and field); conceptual, analytical, and numerical modeling; design and construction methods. 35 papers deal with practical mining problems and include information on rock reinforcement technology, blasting, rock bursts, open pit mining, remote sensing and borehole geophysics, mechanical fragmentation, and subsidence. Areas emphasized are coal and metal mine design problems. Other papers deal with the newest computer models, new instruments, fracture mechanics, new laboratory testing techniques, and in situ testing.
Rock Engineering and Rock Mechanics: Structures in and on Rock Masses covers the most important topics and state-of-the-art in the area of rock mechanics, with an emphasis on structures in and on rock masses. The 255 contributions (including 6 keynote lectures) from the 2014 ISRM European Rock Mechanics Symposium (EUROCK 2014, Vigo, Spain, 27-29 Ma
Important developments in the progress of the theory of rock mechanics during recent years are based on fractals and damage mechanics. The concept of fractals has proved to be a useful way of describing the statistics of naturally occurring geometrics. Natural objects, from mountains and coastlines to clouds and forests, are found to have boundaries best described as fractals. Fluid flow through jointed rock masses and clusterings of earthquakes are found to follow fractal patterns in time and space. Fracturing in rocks at all scales, from the microscale (microcracks) to the continental scale (megafaults), can lead to fractal structures. The process of diagenesis and pore geometry of sedimentary rock can be quantitatively described by fractals, etc. The book is mainly concerned with these developments, as related to fractal descriptions of fragmentations, damage and fracture of rocks, rock burst, joint roughness, rock porosity and permeability, rock grain growth, rock and soil particles, shear slips, fluid flow through jointed rocks, faults, earthquake clustering, and so on. The prime concerns of the book are to give a simple account of the basic concepts, methods of fractal geometry, and their applications to rock mechanics, geology, and seismology, and also to discuss damage mechanics of rocks and its application to mining engineering. The book can be used as a textbook for graduate students, by university teachers to prepare courses and seminars, and by active scientists who want to become familiar with a fascinating new field.
This book provides theoretical concepts and applications of fractals and multifractals to a broad range of audiences from various scientific communities, such as petroleum, chemical, civil and environmental engineering, atmospheric research, and hydrology. In the first chapter, we introduce fractals and multifractals from physics and math viewpoints. We then discuss theory and practical applications in detail. In what follows, in chapter 2, fragmentation process is modeled using fractals. Fragmentation is the breaking of aggregates into smaller pieces or fragments, a typical phenomenon in nature. In chapter 3, the advantages and disadvantages of two- and three-phase fractal models are discussed in detail. These two kinds of approach have been widely applied in the literature to model different characteristics of natural phenomena. In chapter 4, two- and three-phase fractal techniques are used to develop capillary pressure curve models, which characterize pore-size distribution of porous media. Percolation theory provides a theoretical framework to model flow and transport in disordered networks and systems. Therefore, following chapter 4, in chapter 5 the fractal basis of percolation theory and its applications in surface and subsurface hydrology are discussed. In chapter 6, fracture networks are shown to be modeled using fractal approaches. Chapter 7 provides different applications of fractals and multifractals to petrophysics and relevant area in petroleum engineering. In chapter 8, we introduce the practical advantages of fractals and multifractals in geostatistics at large scales, which have broad applications in stochastic hydrology and hydrogeology. Multifractals have been also widely applied to model atmospheric characteristics, such as precipitation, temperature, and cloud shape. In chapter 9, these kinds of properties are addressed using multifractals. At watershed scales, river networks have been shown to follow fractal behavior. Therefore, the applications of fractals are addressed in chapter 10. Time series analysis has been under investigations for several decades in physics, hydrology, atmospheric research, civil engineering, and water resources. In chapter 11, we therefore, provide fractal, multifractal, multifractal detrended fluctuation analyses, which can be used to study temporal characterization of a phenomenon, such as flow discharge at a specific location of a river. Chapter 12 addresses signals and again time series using a novel fractal Fourier analysis. In chapter 13, we discuss constructal theory, which has a perspective opposite to fractal theories, and is based on optimizationof diffusive exchange. In the case of river drainages, for example, the constructal approach begins at the divide and generates headwater streams first, rather than starting from the fundamental drainage pattern.
This book investigates the evolution process of rockburst based on the energy dissipation theory and proposes appropriate active prevention and control technologies. It discusses the electromagnetic radiation (EMR) generated by coal rock fractures as a measurement of the amount of dissipated energy, and the use of EMR to experimentally observe the time domain characteristics of energy dissipation during coal rock failure processes. It then proposes the concept of the rockburst activity domain system (RADS), establishes a dynamic pressure model of rockburst, and describes the energy criterion for rockburst instability. Lastly, it presents two waterjet cutting-based cases of pressure relief and rockburst prevention. The book serves as a reference resource for mine safety workers, engineering technicians, scientists, graduate students and undergraduates engaged in research on dynamic hazards such as rockburst..
Ancient Underground Opening and Preservation contains 59 papers presented at the International Symposium on Scientific Problems and Long-term Preservation of Largescale Ancient Underground Engineering (Longyou, China, 23-26 October 2015). The contributions focus on scientific and technical issues related to long-term preservation of large-scale anc
Harmonising Rock Mechanics and the Environment comprises the proceedings (invited and contributed papers) of the 12th ISRM International Congress on Rock Mechanics (Beijing, China, 18-21 October 2011). The contributions cover the entire scope of rock mechanics and rock engineering, with an emphasis on the critical role of both disciplines in sustai