Download Free Fpgas And Hpc Book in PDF and EPUB Free Download. You can read online Fpgas And Hpc and write the review.

High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.
This book provides wide knowledge about designing FPGA-based heterogeneous computing systems, using a high-level design environment based on OpenCL (Open Computing language), which is called OpenCL for FPGA. The OpenCL-based design methodology will be the key technology to exploit the potential of FPGAs in various applications such as low-power embedded applications and high-performance computing. By understanding the OpenCL-based design methodology, readers can design an entire FPGA-based computing system more easily compared to the conventional HDL-based design, because OpenCL for FPGA takes care of computation on a host, data transfer between a host and an FPGA, computation on an FPGA with a capable of accessing external DDR memories. In the step-by-step way, readers can understand followings: how to set up the design environment how to write better codes systematically considering architectural constraints how to design practical applications
The modern FPGAs enable system designers to develop high-performance computing (HPC) applications with a large amount of parallelism. Real-time image processing is such a requirement that demands much more processing power than a conventional processor can deliver. In this research, we implemented software and hardware based architectures on FPGA to achieve real-time image processing. Furthermore, we benchmark and compare our implemented architectures with existing architectures. The operational structures of those systems consist of on-chip processors or custom vision coprocessors implemented in a parallel manner with efficient memory and bus architectures. The performance properties such as the accuracy, throughput and efficiency are measured and presented. According to results, FPGA implementations are faster than the DSP and GPP implementations for algorithms which can exploit a large amount of parallelism. Our image pre-processing architecture is nearly two times faster than the optimized software implementation on an Intel Core 2 Duo GPP. However, because of the higher clock frequency of DSPs/GPPs, the processing speed for sequential computations on on-chip processors in FPGAs is slower than on DSPs/GPPs. These on-chip processors are well suited for multi-processor systems for software level parallelism. Our quad-Microblaze architecture achieved 75-80% performance improvement compared to its single Microblaze counterpart. Moreover, the quad-Microblaze design is faster than the single-powerPC implementation on FPFA. Therefore, multi-processor architecture with customised coprocessors are effective for implementing custom parallel architecture to achieve real time image processing.
This book constitutes the refereed post-conference proceedings of 13 workshops held at the 34th International ISC High Performance 2019 Conference, in Frankfurt, Germany, in June 2019: HPC I/O in the Data Center (HPC-IODC), Workshop on Performance & Scalability of Storage Systems (WOPSSS), Workshop on Performance & Scalability of Storage Systems (WOPSSS), 13th Workshop on Virtualization in High-Performance Cloud Computing (VHPC '18), 3rd International Workshop on In Situ Visualization: Introduction and Applications, ExaComm: Fourth International Workshop on Communication Architectures for HPC, Big Data, Deep Learning and Clouds at Extreme Scale, International Workshop on OpenPOWER for HPC (IWOPH18), IXPUG Workshop: Many-core Computing on Intel, Processors: Applications, Performance and Best-Practice Solutions, Workshop on Sustainable Ultrascale Computing Systems, Approximate and Transprecision Computing on Emerging Technologies (ATCET), First Workshop on the Convergence of Large Scale Simulation and Artificial Intelligence, 3rd Workshop for Open Source Supercomputing (OpenSuCo), First Workshop on Interactive High-Performance Computing, Workshop on Performance Portable Programming Models for Accelerators (P^3MA). The 48 full papers included in this volume were carefully reviewed and selected. They cover all aspects of research, development, and application of large-scale, high performance experimental and commercial systems. Topics include HPC computer architecture and hardware; programming models, system software, and applications; solutions for heterogeneity, reliability, power efficiency of systems; virtualization and containerized environments; big data and cloud computing; and artificial intelligence.
In the research area of computer science, practitioners are constantly searching for faster platforms with pertinent results. With analytics that span environmental development to computer hardware emulation, problem-solving algorithms are in high demand. Field-Programmable Gate Array (FPGA) is a promising computing platform that can be significantly faster for some applications and can be applied to a variety of fields. FPGA Algorithms and Applications for the Internet of Things provides emerging research exploring the theoretical and practical aspects of computable algorithms and applications within robotics and electronics development. Featuring coverage on a broad range of topics such as neuroscience, bioinformatics, and artificial intelligence, this book is ideally designed for computer science specialists, researchers, professors, and students seeking current research on cognitive analytics and advanced computing.
This book covers the latest approaches and results from reconfigurable computing architectures employed in the finance domain. So-called field-programmable gate arrays (FPGAs) have already shown to outperform standard CPU- and GPU-based computing architectures by far, saving up to 99% of energy depending on the compute tasks. Renowned authors from financial mathematics, computer architecture and finance business introduce the readers into today’s challenges in finance IT, illustrate the most advanced approaches and use cases and present currently known methodologies for integrating FPGAs in finance systems together with latest results. The complete algorithm-to-hardware flow is covered holistically, so this book serves as a hands-on guide for IT managers, researchers and quants/programmers who think about integrating FPGAs into their current IT systems.
This book makes powerful Field Programmable Gate Array (FPGA) and reconfigurable technology accessible to software engineers by covering different state-of-the-art high-level synthesis approaches (e.g., OpenCL and several C-to-gates compilers). It introduces FPGA technology, its programming model, and how various applications can be implemented on FPGAs without going through low-level hardware design phases. Readers will get a realistic sense for problems that are suited for FPGAs and how to implement them from a software designer’s point of view. The authors demonstrate that FPGAs and their programming model reflect the needs of stream processing problems much better than traditional CPU or GPU architectures, making them well-suited for a wide variety of systems, from embedded systems performing sensor processing to large setups for Big Data number crunching. This book serves as an invaluable tool for software designers and FPGA design engineers who are interested in high design productivity through behavioural synthesis, domain-specific compilation, and FPGA overlays. Introduces FPGA technology to software developers by giving an overview of FPGA programming models and design tools, as well as various application examples; Provides a holistic analysis of the topic and enables developers to tackle the architectural needs for Big Data processing with FPGAs; Explains the reasons for the energy efficiency and performance benefits of FPGA processing; Provides a user-oriented approach and a sense for where and how to apply FPGA technology.
This book constitutes the proceedings of the 9th Latin American Conference on High Performance Computing, CARLA 2022, held in Porto Alegre, Brazil, in September 2022. The 16 full papers presented in this volume were carefully reviewed and selected from 56 submissions. CARLA, the Latin American High Performance Computing Conference, is an international academic meeting aimed at providing a forum to foster the growth and strength of the High Performance Computing (HPC) community in Latin America and the Caribbean through the exchange and dissemination of new ideas, techniques, and research in HPC and its application areas.
As the complexity of modern embedded systems increases, it becomes less practical to design monolithic processing platforms. As a result, reconfigurable computing is being adopted widely for more flexible design. Reconfigurable Computers offer the spatial parallelism and fine-grained customizability of application-specific circuits with the postfabrication programmability of software. To make the most of this unique combination of performance and flexibility, designers need to be aware of both hardware and software issues. FPGA users must think not only about the gates needed to perform a computation but also about the software flow that supports the design process. The goal of this book is to help designers become comfortable with these issues, and thus be able to exploit the vast opportunities possible with reconfigurable logic.
This book constitutes the refereed proceedings of the 30th International Conference, ISC High Performance 2015, [formerly known as the International Supercomputing Conference] held in Frankfurt, Germany, in July 2015. The 27 revised full papers presented together with 10 short papers were carefully reviewed and selected from 67 submissions. The papers cover the following topics: cost-efficient data centers, scalable applications, advances in algorithms, scientific libraries, programming models, architectures, performance models and analysis, automatic performance optimization, parallel I/O and energy efficiency.