Download Free Fpga Frontiers Book in PDF and EPUB Free Download. You can read online Fpga Frontiers and write the review.

While field programmable gate arrays (FPGAs) are certainly not new, their time to take the market by force did not fully arrive until 2016, at least for a new wave of applications in research, enterprise, and machine learning. With key acquisitions, highly publicized use cases of FPGAs at scale for real-world applications, and momentum to make programming these devices easier, FPGAs found the limelight-and that story is just beginning. Tracing the progression of FPGA use cases, technology developments, and market trends via the compute infrastructure analysis publication, The Next Platform, authors Nicole Hemsoth and Timothy Prickett Morgan pull together the last year in FPGA developments and offer a synthesized, holistic view of where the industry is heading-and where the new application areas will emerge. From the use of these devices in deep learning and machine learning, high performance computing (HPC), and enterprise applications, the range of FPGA acceleration is growing. In this 2017 edition of the book, readers will see the big picture for FPGAs in terms of past, present, and future and be armed with a sense of direction for new applications and innovations on the device and software sides.
Quality Electronic Design (QED)’s landscape spans a vast region where territories of many participating disciplines and technologies overlap. This book explores the latest trends in several key topics related to quality electronic design, with emphasis on Hardware Security, Cybersecurity, Machine Learning, and application of Artificial Intelligence (AI). The book includes topics in nonvolatile memories (NVM), Internet of Things (IoT), FPGA, and Neural Networks.
This book reviews fault-tolerance techniques for SRAM-based Field Programmable Gate Arrays (FPGAs), outlining many methods for designing fault tolerance systems. Some of these are based on new fault-tolerant architecture, and others on protecting the high-level hardware description before synthesis in the FPGA. The text helps the reader choose the best techniques project-by-project, and to compare fault tolerant techniques for programmable logic applications.
This book gathers the proceedings of the 10th International Conference on Frontier Computing, held in Singapore, on July 10–13, 2020, and provides comprehensive coverage of the latest advances and trends in information technology, science, and engineering. It addresses a number of broad themes, including communication networks, business intelligence and knowledge management, web intelligence, and related fields that inspire the development of information technology. The respective contributions cover a wide range of topics: database and data mining, networking and communications, web and Internet of things, embedded systems, soft computing, social network analysis, security and privacy, optical communication, and ubiquitous/pervasive computing. Many of the papers outline promising future research directions, and the book benefits students, researchers, and professionals alike. Further, it offers a useful reference guide for newcomers to the field.
This book introduces the concepts of soft errors in FPGAs, as well as the motivation for using commercial, off-the-shelf (COTS) FPGAs in mission-critical and remote applications, such as aerospace. The authors describe the effects of radiation in FPGAs, present a large set of soft-error mitigation techniques that can be applied in these circuits, as well as methods for qualifying these circuits under radiation. Coverage includes radiation effects in FPGAs, fault-tolerant techniques for FPGAs, use of COTS FPGAs in aerospace applications, experimental data of FPGAs under radiation, FPGA embedded processors under radiation and fault injection in FPGAs. Since dedicated parallel processing architectures such as GPUs have become more desirable in aerospace applications due to high computational power, GPU analysis under radiation is also discussed.
This book presents the proceedings of the 6th International Conference on Frontier Computing, held in Kuala Lumpur, Malaysia on July 3–6, 2018, and provides comprehensive coverage of the latest advances and trends in information technology, science and engineering. It addresses a number of broad themes, including communication networks, business intelligence and knowledge management, web intelligence, and related fields that inspire the development of information technology. The contributions cover a wide range of topics: database and data mining, networking and communications, web and internet of things, embedded systems, soft computing, social network analysis, security and privacy, optical communication, and ubiquitous/pervasive computing. Many of the papers outline promising future research directions. The book is a valuable resource for students, researchers and professionals, and also offers a useful reference guide for newcomers to the field.
Field Programmable Gate Arrays (FPGAs) are devices that provide a fast, low-cost way for embedded system designers to customize products and deliver new versions with upgraded features, because they can handle very complicated functions, and be reconfigured an infinite number of times. In addition to introducing the various architectural features available in the latest generation of FPGAs, The Design Warrior’s Guide to FPGAs also covers different design tools and flows. This book covers information ranging from schematic-driven entry, through traditional HDL/RTL-based simulation and logic synthesis, all the way up to the current state-of-the-art in pure C/C++ design capture and synthesis technology. Also discussed are specialist areas such as mixed hardward/software and DSP-based design flows, along with innovative new devices such as field programmable node arrays (FPNAs). Clive "Max" Maxfield is a bestselling author and engineer with a large following in the electronic design automation (EDA)and embedded systems industry. In this comprehensive book, he covers all the issues of interest to designers working with, or contemplating a move to, FPGAs in their product designs. While other books cover fragments of FPGA technology or applications this is the first to focus exclusively and comprehensively on FPGA use for embedded systems. First book to focus exclusively and comprehensively on FPGA use in embedded designs World-renowned best-selling author Will help engineers get familiar and succeed with this new technology by providing much-needed advice on choosing the right FPGA for any design project
Field-Programmable Gate Array (FPGA) technologies have increased in popularity in recent years due to their adaptability and high computing potential. Further research in this area illustrates the potential for further advancements and applications of this useful technology. Field-Programmable Gate Array (FPGA) Technologies for High Performance Instrumentation presents experimental and theoretical research on FPGA-based design and the development of virtual scientific instrumentation that can be used by a broad segment of scientists across a variety of research fields. Focusing on crucial innovations and algorithms for signal processing, data acquisition mechanisms, FPGA-based hardware design, and parallel computing, this publication is a critical resource for researchers, development engineers, and graduate-level students.
Design for Embedded Image Processing on FPGAs Bridge the gap between software and hardware with this foundational design reference Field-programmable gate arrays (FPGAs) are integrated circuits designed so that configuration can take place. Circuits of this kind play an integral role in processing images, with FPGAs increasingly embedded in digital cameras and other devices that produce visual data outputs for subsequent realization and compression. These uses of FPGAs require specific design processes designed to mediate smoothly between hardware and processing algorithm. Design for Embedded Image Processing on FPGAs provides a comprehensive overview of these processes and their applications in embedded image processing. Beginning with an overview of image processing and its core principles, this book discusses specific design and computation techniques, with a smooth progression from the foundations of the field to its advanced principles. Readers of the second edition of Design for Embedded Image Processing on FPGAs will also find: Detailed discussion of image processing techniques including point operations, histogram operations, linear transformations, and more New chapters covering Deep Learning algorithms and Image and Video Coding Example applications throughout to ground principles and demonstrate techniques Design for Embedded Image Processing on FPGAs is ideal for engineers and academics working in the field of Image Processing, as well as graduate students studying Embedded Systems Engineering, Image Processing, Digital Design, and related fields.