Download Free Fpga Algorithms And Applications For The Internet Of Things Book in PDF and EPUB Free Download. You can read online Fpga Algorithms And Applications For The Internet Of Things and write the review.

"This book examines the application of field-programmable gate array algorithms in internet of things, artificial intelligence, and high-performance computing"--
In the research area of computer science, practitioners are constantly searching for faster platforms with pertinent results. With analytics that span environmental development to computer hardware emulation, problem-solving algorithms are in high demand. Field-Programmable Gate Array (FPGA) is a promising computing platform that can be significantly faster for some applications and can be applied to a variety of fields. FPGA Algorithms and Applications for the Internet of Things provides emerging research exploring the theoretical and practical aspects of computable algorithms and applications within robotics and electronics development. Featuring coverage on a broad range of topics such as neuroscience, bioinformatics, and artificial intelligence, this book is ideally designed for computer science specialists, researchers, professors, and students seeking current research on cognitive analytics and advanced computing.
This book provides information on data-driven infrastructure design, analytical approaches, and technological solutions with case studies for smart cities. This book aims to attract works on multidisciplinary research spanning across the computer science and engineering, environmental studies, services, urban planning and development, social sciences and industrial engineering on technologies, case studies, novel approaches, and visionary ideas related to data-driven innovative solutions and big data-powered applications to cope with the real world challenges for building smart cities.
This book provides an essential overview of IoT, energy-efficient topology control protocols, motivation, and challenges for topology control for Wireless Sensor Networks, and the scope of the research in the domain of IoT. Further, it discusses the different design issues of topology control and energy models for IoT applications, different types of simulators with their advantages and disadvantages. It also discusses extensive simulation results and comparative analysis for various algorithms. The key point of this book is to present a solution to minimize energy and extend the lifetime of IoT networks using optimization methods to improve the performance. Features: Describes various facets necessary for energy optimization in IoT domain. Covers all aspects to achieve energy optimization using latest technologies and algorithms, in wireless sensor networks. Presents various IoT and Topology Control Methods and protocols, various network models, and model simulation using MATLAB®. Reviews methods and results of optimization with Simulation Hardware architecture leading to prolonged life of IoT networks. First time introduces bio-inspired algorithms in the IoT domain for performance optimization This book aims at Graduate Students, Researchers in Information Technology, Computer Science and Engineering, Electronics and Communication Engineering.
High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.
Traditional patient care and treatment approaches often lack the personalized and interactive elements necessary for effective healthcare delivery. This means that the healthcare industry must find innovative solutions to improve patient outcomes, enhance rehabilitation processes, and optimize resource utilization. There is a gap between the traditional approach and the need for innovation that highlights the importance of a comprehensive understanding of emerging technologies, including Kinect Sensor technology, and the potential to transform healthcare practices with this tech. Revolutionizing Healthcare Treatment With Sensor Technology addresses this critical need by thoroughly exploring how Kinect Sensor technology can revolutionize patient care and treatment methodologies. By repurposing and customizing Kinect Sensor for healthcare applications, this book showcases how depth-sensing cameras, infrared sensors, and advanced motion tracking can capture and interpret real-time patient movements and interactions. This book is ideal for healthcare professionals, hospital administrators, researchers, patients, caregivers, and healthcare technology developers seeking to leverage Kinect Sensor technology for enhanced healthcare delivery. Through detailed case studies and practical examples, experts can learn how to integrate Kinect Sensor into various medical settings to gain valuable insights into patients' physical capabilities, monitor their progress, and create personalized treatment plans.
Dr Donald Bailey starts with introductory material considering the problem of embedded image processing, and how some of the issues may be solved using parallel hardware solutions. Field programmable gate arrays (FPGAs) are introduced as a technology that provides flexible, fine-grained hardware that can readily exploit parallelism within many image processing algorithms. A brief review of FPGA programming languages provides the link between a software mindset normally associated with image processing algorithms, and the hardware mindset required for efficient utilization of a parallel hardware design. The design process for implementing an image processing algorithm on an FPGA is compared with that for a conventional software implementation, with the key differences highlighted. Particular attention is given to the techniques for mapping an algorithm onto an FPGA implementation, considering timing, memory bandwidth and resource constraints, and efficient hardware computational techniques. Extensive coverage is given of a range of low and intermediate level image processing operations, discussing efficient implementations and how these may vary according to the application. The techniques are illustrated with several example applications or case studies from projects or applications he has been involved with. Issues such as interfacing between the FPGA and peripheral devices are covered briefly, as is designing the system in such a way that it can be more readily debugged and tuned. Provides a bridge between algorithms and hardware Demonstrates how to avoid many of the potential pitfalls Offers practical recommendations and solutions Illustrates several real-world applications and case studies Allows those with software backgrounds to understand efficient hardware implementation Design for Embedded Image Processing on FPGAs is ideal for researchers and engineers in the vision or image processing industry, who are looking at smart sensors, machine vision, and robotic vision, as well as FPGA developers and application engineers. The book can also be used by graduate students studying imaging systems, computer engineering, digital design, circuit design, or computer science. It can also be used as supplementary text for courses in advanced digital design, algorithm and hardware implementation, and digital signal processing and applications. Companion website for the book: www.wiley.com/go/bailey/fpga
In an era of rapid technological advancements, libraries have evolved to cater to the changing needs and aspirations of users and society at large. IT has emerged as a critical factor in this transformation, empowering libraries to offer faster, more efficient, and highly convenient services to their users. The Handbook of Research on Innovative Approaches to Information Technology in Library and Information Science is a comprehensive guide that delves into the dynamic relationship between libraries, information centers, and information technology (IT). Within the pages of this edited research handbook, a team of esteemed scholars and experts in the field explore the multifaceted applications of IT in libraries and information centers. They delve into the effective management of collections, resources, and operations, shedding light on how technology can optimize these vital aspects of library services. From information centers that curate and provide access, to diverse information resources, to the revolutionary impact of IT in digitizing libraries, this handbook covers a wide range of topics relevant to contemporary library and information science. This book address crucial themes such as artificial intelligence, data science, computer science, information management, metadata, cybersecurity, machine learning, chatbots, mobile services, and robotics. It explores the integration of these cutting-edge technologies within the realm of libraries, examining how they enhance efficiency, user experience, and digital equity. By addressing the challenges and opportunities presented by IT, this handbook equips librarians, information professionals, researchers, professors, advanced students, and practitioners with the knowledge and insights needed to navigate the rapidly evolving landscape of library and information science.
Optimized linear algebra (LA) libraries that are able to exploit the underlying hardware are always of interest in the high-performance computing community. The implementation of LA software has evolved along with computer architecture, while the specification remains unaltered almost from the beginning. It is important to differentiate between the specification of LA libraries and their implementation. Because LA libraries pursue high performance, the implementation for a given architecture needs to be optimized for it specifically. However, the type of operations included in the libraries, the input/output parameters, and the data types to be handled are common to all of them. This is why, while the specification remains constant, the implementation evolves with the creation of new architectures. Developing Linear Algebra Codes on Modern Processors: Emerging Research and Opportunities presents the main characteristics of LA libraries, showing the differences between the standards for sparse and dense versions. It further explores relevant linear algebra problems and shows, in a clear and understandable way, how to solve them using different computer architectures. Covering topics such as programming models, batched computing, and distributed memory platforms, this premier reference source is an excellent resource for programmers, computer scientists, engineers, students and faculty of higher education, librarians, researchers, and academicians.
This book constitutes the proceedings of the International Conference on Internet of Things, ICIOT 2018, held in Seattle, WA, USA, in June 2018. The 13 full papers and 1 short paper presented in this volume was carefully reviewed and selected for inclusion in this book. The contributions are organized in topical sections named: Research Track – Architecture; Research Track – Smart IoT; Application and Industry Track; and Short Paper Track. They deal with research and application innovations in the internet of things services.