Download Free Fourier Multispectral Imaging Book in PDF and EPUB Free Download. You can read online Fourier Multispectral Imaging and write the review.

This book demonstrates the concept of Fourier ptychography, a new imaging technique that bypasses the resolution limit of the employed optics. In particular, it transforms the general challenge of high-throughput, high-resolution imaging from one that is coupled to the physical limitations of the optics to one that is solvable through computation. Demonstrated in a tutorial form and providing many MATLAB® simulation examples for the reader, it also discusses the experimental implementation and recent developments of Fourier ptychography. This book will be of interest to researchers and engineers learning simulation techniques for Fourier optics and the Fourier ptychography concept.
This book includes some very recent applications and the newest emerging trends of hyper-spectral imaging (HSI). HSI is a very recent and strange beast, a sort of a melting pot of previous techniques and scientific interests, merging and concentrating the efforts of physicists, chemists, botanists, biologists, and physicians, to mention just a few, as well as experts in data crunching and statistical elaboration. For almost a century, scientific observation, from looking to planets and stars down to our own cells and below, could be divided into two main categories: analyzing objects on the basis of their physical dimension (recording size, position, weight, etc. and their variations) or on how the object emits, reflects, or absorbs part of the electromagnetic spectrum, i.e., spectroscopy. While the two aspects have been obviously entangled, instruments and skills have always been clearly distinct from each other. With HSI now available, this is no longer the case. This instrument can return specimen dimensionalities and spectroscopic properties to any single pixel of your specimen, in a single set of data. HSI modality is ubiquitous and scale-invariant enough to be used to mark terrestrial resources on the basis of a land map obtained from satellite observation (actually, the oldest application of this type) or to understand if the cell you are looking at is cancerous or perfectly healthy. For all these reasons, HSI represents one of the most exciting methodologies of the new millennium.
This book constitutes the refereed proceedings of the 6th Computational Color Imaging Workshop, CCIW 2017, held in Milano, Italy, in March 2017. The 23 full papers, including 4 tutorials and 3 invited papers, accepted were carefully reviewed and selected from 25 submissions. The papers are organized in topical sections on color image processing; color image quality; color in digital cultural heritage; spectral imaging; color characterization; color image analysis.
A practical and self-contained guide to the principles, techniques, models and tools of imaging spectroscopy. Bringing together material from essential physics and digital signal processing, it covers key topics such as sensor design and calibration, atmospheric inversion and model techniques, and processing and exploitation algorithms. Readers will learn how to apply the main algorithms to practical problems, how to choose the best algorithm for a particular application, and how to process and interpret hyperspectral imaging data. A wealth of additional materials accompany the book online, including example projects and data for students, and problem solutions and viewgraphs for instructors. This is an essential text for senior undergraduate and graduate students looking to learn the fundamentals of imaging spectroscopy, and an invaluable reference for scientists and engineers working in the field.
Based on the integration of computer vision and spectrscopy techniques, hyperspectral imaging is a novel technology for obtaining both spatial and spectral information on a product. Used for nearly 20 years in the aerospace and military industries, more recently hyperspectral imaging has emerged and matured into one of the most powerful and rapidly growing methods of non-destructive food quality analysis and control. Hyperspectral Imaging for Food Quality Analysis and Control provides the core information about how this proven science can be practically applied for food quality assessment, including information on the equipment available and selection of the most appropriate of those instruments. Additionally, real-world food-industry-based examples are included, giving the reader important insights into the actual application of the science in evaluating food products. - Presentation of principles and instruments provides core understanding of how this science performs, as well as guideline on selecting the most appropriate equipment for implementation - Includes real-world, practical application to demonstrate the viability and challenges of working with this technology - Provides necessary information for making correct determination on use of hyperspectral imaging
Hyperspectral Satellites and System Design is the first book on this subject. It provides a systematic analysis and detailed design of the entire development process of hyperspectral satellites. Derived from the author’s 25-year firsthand experience as a technical lead of space missions at the Canadian Space Agency, the book offers engineers, scientists, and decision-makers detailed knowledge and guidelines on hyperspectral satellite system design, trade-offs, performance modeling and simulation, optimization from component to system level, subsystem design, and implementation strategies. This information will help reduce the risk, shorten the development period, and lower the cost of hyperspectral satellite missions. This book is a must-have reference for professionals in developing hyperspectral satellites and data applications. It is also an excellent introductory book for early practitioners and students who want to learn more about hyperspectral satellites and their applications.
This book constitutes the refereed proceedings of the 7th Computational Color Imaging Workshop, CCIW 2019, held in Chiba, Japan, in March 2019. The 22 full papers presented in this volume were carefully reviewed and selected from 34 submissions. The papers are organized in topical sections named: computational color imaging; multispectral imaging; perceptual model and application; color image evaluation; colot image filtering; color image applications; and color imaging for material appearance. In addition, the book contains 3 invited talks in full paper length.
In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. Für die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer Datensätze werden die vorgeschlagenen Rekonstruktionsansätze im Detail evaluiert. -In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail.