Download Free Fourier Coefficients Of Automorphic Forms Book in PDF and EPUB Free Download. You can read online Fourier Coefficients Of Automorphic Forms and write the review.

Detailed exposition of automorphic representations and their relation to string theory, for mathematicians and theoretical physicists.
Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.
This volume discusses various perspectives of the theory of automorphic forms drawn from the author's notes from a Rutgers University graduate course. In addition to detailed and often nonstandard treatment of familiar theoretical topics, the author also gives special attention to such subjects as theta- functions and representatives by quadratic forms. Annotation copyrighted by Book News, Inc., Portland, OR
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
This book presents a treatment of the theory of $L$-functions developed by means of the theory of Eisenstein series and their Fourier coefficients, a theory which is usually referred to as the Langlands-Shahidi method. The information gathered from this method, when combined with the converse theorems of Cogdell and Piatetski-Shapiro, has been quite sufficient in establishing a number of new cases of Langlands functoriality conjecture; at present, some of these cases cannot be obtained by any other method. These results have led to far-reaching new estimates for Hecke eigenvalues of Maass forms, as well as definitive solutions to certain problems in analytic and algebraic number theory. This book gives a detailed treatment of important parts of this theory, including a rather complete proof of Casselman-Shalika's formula for unramified Whittaker functions as well as a general treatment of the theory of intertwining operators. It also covers in some detail the global aspects of the method as well as some of its applications to group representations and harmonic analysis. This book is addressed to graduate students and researchers who are interested in the Langlands program in automorphic forms and its connections with number theory.