Download Free Fourier Analysis On Finite Groups With Applications In Signal Processing And System Design Book in PDF and EPUB Free Download. You can read online Fourier Analysis On Finite Groups With Applications In Signal Processing And System Design and write the review.

Discover applications of Fourier analysis on finite non-Abeliangroups The majority of publications in spectral techniques considerFourier transform on Abelian groups. However, non-Abelian groupsprovide notable advantages in efficient implementations of spectralmethods. Fourier Analysis on Finite Groups with Applications in SignalProcessing and System Design examines aspects of Fourieranalysis on finite non-Abelian groups and discusses differentmethods used to determine compact representations for discretefunctions providing for their efficient realizations and relatedapplications. Switching functions are included as an example ofdiscrete functions in engineering practice. Additionally,consideration is given to the polynomial expressions and decisiondiagrams defined in terms of Fourier transform on finitenon-Abelian groups. A solid foundation of this complex topic is provided bybeginning with a review of signals and their mathematical modelsand Fourier analysis. Next, the book examines recent achievementsand discoveries in: Matrix interpretation of the fast Fourier transform Optimization of decision diagrams Functional expressions on quaternion groups Gibbs derivatives on finite groups Linear systems on finite non-Abelian groups Hilbert transform on finite groups Among the highlights is an in-depth coverage of applications ofabstract harmonic analysis on finite non-Abelian groups in compactrepresentations of discrete functions and related tasks in signalprocessing and system design, including logic design. All chaptersare self-contained, each with a list of references to facilitatethe development of specialized courses or self-study. With nearly 100 illustrative figures and fifty tables, this isan excellent textbook for graduate-level students and researchersin signal processing, logic design, and system theory-as well asthe more general topics of computer science and appliedmathematics.
Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal processing and related multidimensional transform theory, and quantum physics to elementary deterministic finance and even the foundations of western music theory. As a definitive text on Fourier Analysis, Handbook of Fourier Analysis and Its Applications is meant to replace several less comprehensive volumes on the subject, such as Processing of Multifimensional Signals by Alexandre Smirnov, Modern Sampling Theory by John J. Benedetto and Paulo J.S.G. Ferreira, Vector Space Projections by Henry Stark and Yongyi Yang and Fourier Analysis and Imaging by Ronald N. Bracewell. In addition to being primarily used as a professional handbook, it includes sample problems and their solutions at the end of each section and thus serves as a textbook for advanced undergraduate students and beginning graduate students in courses such as: Multidimensional Signals and Systems, Signal Analysis, Introduction to Shannon Sampling and Interpolation Theory, Random Variables and Stochastic Processes, and Signals and Linear Systems.
This book describes recent findings in the domain of Boolean logic and Boolean algebra, covering application domains in circuit and system design, but also basic research in mathematics and theoretical computer science. Content includes invited chapters and a selection of the best papers presented at the 13th annual International Workshop on Boolean Problems. Provides a single-source reference to the state-of-the-art research in the field of logic synthesis and Boolean techniques; Includes a selection of the best papers presented at the 13th annual International Workshop on Boolean Problems; Covers Boolean algebras, Boolean logic, Boolean modeling, Combinatorial Search, Boolean and bitwise arithmetic, Software and tools for the solution of Boolean problems, Applications of Boolean logic and algebras, Applications to real-world problems, Boolean constraint solving, and Extensions of Boolean logic.
The Internet of Things is a great new challenge for the development of digital systems. In addition to the increasing number of classical unconnected digital systems, more people are regularly using new electronic devices and software that are controllable and usable by means of the internet. All such systems utilize the elementariness of Boolean values. A Boolean variable can carry only two different Boolean values: FALSE or TRUE (0 or 1), and has the best interference resistance in technical systems. However, a Boolean function exponentially depends on the number of its variables. This exponential complexity is the cause of major problems in the process of design and realization of circuits. According to Moore’s Law, the complexity of digital systems approximately doubles every 18 months. This requires comprehensive knowledge and techniques to solve complex Boolean problems. This book summarizes both new problems and solutions in the Boolean domain in solving such issues. Part 1 describes powerful new approaches in solving exceptionally complex Boolean problems. Efficient methods contribute to solving problems of extreme complexity. New algorithms and programs utilize the huge number of computing cores of the Graphical Processing Unit and improve the performance of calculations by several orders of magnitude. Part 2 represents several applications of digital systems. Due to the crucial role of the internet, both solutions and open problems regarding the security of these systems are discussed. The exploration of certain properties of such systems leads to a number of efficient solutions, which can be reused in a wide field of applications. Part 3 discusses the scientific basis of future circuit technologies, investigating the need for completely new design methods for the atomic level of quantum computers. This part also concerns itself with reversible circuits as the basis for quantum circuits and specifies important issues regarding future improvements.
This book sets out an account of the tools which Frobenius used to discover representation theory for nonabelian groups and describes its modern applications. It provides a new viewpoint from which one can examine various aspects of representation theory and areas of application, such as probability theory and harmonic analysis. For example, the focal objects of this book, group matrices, can be thought of as a generalization of the circulant matrices which are behind many important algorithms in information science. The book is designed to appeal to several audiences, primarily mathematicians working either in group representation theory or in areas of mathematics where representation theory is involved. Parts of it may be used to introduce undergraduates to representation theory by studying the appealing pattern structure of group matrices. It is also intended to attract readers who are curious about ideas close to the heart of group representation theory, which do not usually appear in modern accounts, but which offer new perspectives.
This volume constitutes the papers presented at the 15th International Conference on Computer Aided Systems Theory, EUROCAST 2015, held in February 2015 in Las Palmas de Gran Canaria, Spain. The total of 107 papers presented were carefully reviewed and selected for inclusion in the book. The contributions are organized in topical sections on Systems Theory and Applications; Modelling Biological Systems; Intelligent Information Processing; Theory and Applications of Metaheuristic Algorithms; Computer Methods, Virtual Reality and Image Processing for Clinical and Academic Medicine; Signals and Systems in Electronics; Model-Based System Design, Verification, and Simulation; Digital Signal Processing Methods and Applications; Modelling and Control of Robots; Mobile Platforms, Autonomous and Computing Traffic Systems; Cloud and Other Computing Systems; and Marine Sensors and Manipulators.
Symmetries and Groups in Signal Processing: An Introduction deals with the subject of symmetry, and with its place and role in modern signal processing. In the sciences, symmetry considerations and related group theoretic techniques have had a place of central importance since the early twenties. In engineering, however, a matching recognition of their power is a relatively recent development. Despite that, the related literature, in the form of journal papers and research monographs, has grown enormously. A proper understanding of the concepts that have emerged in the process requires a mathematical background that goes beyond what is traditionally covered in an engineering undergraduate curriculum. Admittedly, there is a wide selection of excellent introductory textbooks on the subject of symmetry and group theory. But they are all primarily addressed to students of the sciences and mathematics, or to students of courses in mathematics. Addressed to students with an engineering background, this book is meant to help bridge the gap.
In this book the reader will find a collection of chapters authored/co-authored by a large number of experts around the world, covering the broad field of digital signal processing. This book intends to provide highlights of the current research in the digital signal processing area, showing the recent advances in this field. This work is mainly destined to researchers in the digital signal processing and related areas but it is also accessible to anyone with a scientific background desiring to have an up-to-date overview of this domain. Each chapter is self-contained and can be read independently of the others. These nineteenth chapters present methodological advances and recent applications of digital signal processing in various domains as communications, filtering, medicine, astronomy, and image processing.
Although the Fourier transform is among engineering's most widely used mathematical tools, few engineers realize that the extension of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. This self-contained approach, geared toward readers with a standard background in engineering mathematics, explores the widest possible range of applications to fields such as robotics, mechanics, tomography, sensor calibration, estimation and control, liquid crystal analysis, and conformational statistics of macromolecules. Harmonic analysis is explored in terms of particular Lie groups, and the text deals with only a limited number of proofs, focusing instead on specific applications and fundamental mathematical results. Forming a bridge between pure mathematics and the challenges of modern engineering, this updated and expanded volume offers a concrete, accessible treatment that places the general theory in the context of specific groups.
Spectral techniques facilitate the design and testing of today's increasingly complex digital devices There is heightened interest in spectral techniques for the design of digital devices dictated by ever increasing demands on technology that often cannot be met by classical approaches. Spectral methods provide a uniform and consistent theoretic environment for recent achievements in this area, which appear divergent in many other approaches. Spectral Logic and Its Applications for the Design of Digital Devices gives readers a foundation for further exploration of abstract harmonic analysis over finite groups in the analysis, design, and testing of digital devices. After an introduction, this book provides the essential mathematical background for discussing spectral methods. It then delves into spectral logic and its applications, covering: * Walsh, Haar, arithmetic transform, Reed-Muller transform for binary-valued functions and Vilenkin-Chrestenson transform, generalized Haar, and other related transforms for multiple-valued functions * Polynomial expressions and decision diagram representations for switching and multiple-value functions * Spectral analysis of Boolean functions * Spectral synthesis and optimization of combinational and sequential devices * Spectral methods in analysis and synthesis of reliable devices * Spectral techniques for testing computer hardware This is the authoritative reference for computer science and engineering professionals and researchers with an interest in spectral methods of representing discrete functions and related applications in the design and testing of digital devices. It is also an excellent text for graduate students in courses covering spectral logic and its applications.