Download Free Foundations Of The Theory Of Elasticity Plasticity And Viscoelasticity Book in PDF and EPUB Free Download. You can read online Foundations Of The Theory Of Elasticity Plasticity And Viscoelasticity and write the review.

Foundations of the Theory of Elasticity, Plasticity, and Viscoelasticity details fundamental and practical skills and approaches for carrying out research in the field of modern problems in the mechanics of deformed solids, which involves the theories of elasticity, plasticity, and viscoelasticity. The book includes all modern methods of research a
Foundations of the Theory of Elasticity, Plasticity, and Viscoelasticity details fundamental and practical skills and approaches for carrying out research in the field of modern problems in the mechanics of deformed solids, which involves the theories of elasticity, plasticity, and viscoelasticity. The book includes all modern methods of research as well as the results of the authors’ recent work and is presented with sufficient mathematical strictness and proof. The first six chapters are devoted to the foundations of the theory of elasticity. Theory of stress-strain state, physical relations and problem statements, variation principles, contact and 2D problems, and the theory of plates are presented, and the theories are accompanied by examples of solving typical problems. The last six chapters will be useful to postgraduates and scientists engaged in nonlinear mechanics of deformed inhomogeneous bodies. The foundations of the modern theory of plasticity (general, small elastoplastic deformations and the theory of flow), linear, and nonlinear viscoelasticity are set forth. Corresponding research of three-layered circular plates of various materials is included to illustrate methods of problem solving. Analytical solutions and numerical results for elastic, elastoplastic, lineaer viscoelastic and viscoelastoplastic plates are also given. Thermoviscoelastoplastic characteristics of certain materials needed for numerical account are presented in the eleventh chapter. The informative book is intended for scientists, postgraduates and higher-level students of engineering spheres and will provide important practical skills and approaches.
Theory of Elasticity and Plasticity is designed as a textbook for both undergraduate and postgraduate students of engineering in civil, mechanical and aeronautical disciplines. This book has been written with the objective of bringing the concepts of elasticity and plasticity to the students in a simplified and comprehensive manner. The basic concepts, definitions, theory as well as practical applications are discussed in a clear, logical and concise manner for better understanding. Starting with, general relationships between stress, strain and deformations, the book deals with specific problems on plane stress, plane strain and torsion in non-circular sections. Advanced topics such as membrane analogy, beams on elastic foundations and plastic analysis of pressure vessels are also discussed elaborately. For better comprehension, the text is well supported with:  Large number of worked-out examples in each chapter.  Well-labelled illustrations.  Numerous Review Questions that reinforce the understanding of the subject. As all the concepts are covered extensively with a blend of theory and practice, this book will be a useful resource to the students.
This book presents a discussion of lattice dynamics for perfect and imperfect lattices and their relation to continuum theories of elasticity, piezoelectricity, viscoelasticity and plasticity. Some of the material is rather classical and close in spirit to solid state physics. A major aim here is to present a coherent theory for the four basic behavior types in the style of continuum mechanics. In each case, emphasis is on an explicit display of the physical mechanisms involved rather than general formalisms. The material is presented in terms of an atomistic picture for the discrete system. The basic ideas are believed to be relevant also at an intermediate scale in the continuum description of media with structure such as granular materials and composites.
Most books on continuum mechanics focus on elasticity and fluid mechanics. But whether student or practicing professional, modern engineers need a more thorough treatment to understand the behavior of the complex materials and systems in use today. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity offers a complete tour of the subject that includes not only elasticity and fluid mechanics but also covers plasticity, viscoelasticity, and the continuum model for fatigue and fracture mechanics. In addition to a broader scope, this book also supplies a review of the necessary mathematical tools and results for a self-contained treatment. The author provides finite element formulations of the equations encountered throughout the chapters and uses an approach with just the right amount of mathematical rigor without being too theoretical for practical use. Working systematically from the continuum model for the thermomechanics of materials, coverage moves through linear and nonlinear elasticity using both tensor and matrix notation, plasticity, viscoelasticity, and concludes by introducing the fundamentals of fracture mechanics and fatigue of metals. Requisite mathematical tools appear in the final chapter for easy reference. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity builds a strong understanding of the principles, equations, and finite element formulations needed to solve real engineering problems.
Intended for use by advanced engineering students and professionals, this volume focuses on plastic deformation of metals at normal temperatures, as applied to strength of machines and structures. 1971 edition.
The classical theory of elasticity maintains a place of honour in the science ofthe behaviour ofsolids. Its basic definitions are general for all branches of this science, whilst the methods forstating and solving these problems serve as examples of its application. The theories of plasticity, creep, viscoelas ticity, and failure of solids do not adequately encompass the significance of the methods of the theory of elasticity for substantiating approaches for the calculation of stresses in structures and machines. These approaches constitute essential contributions in the sciences of material resistance and structural mechanics. The first two chapters form Part I of this book and are devoted to the basic definitions ofcontinuum mechanics; namely stress tensors (Chapter 1) and strain tensors (Chapter 2). The necessity to distinguish between initial and actual states in the nonlinear theory does not allow one to be content with considering a single strain measure. For this reason, it is expedient to introduce more rigorous tensors to describe the stress-strain state. These are considered in Section 1.3 for which the study of Sections 2.3-2.5 should precede. The mastering of the content of these sections can be postponed until the nonlinear theory is studied in Chapters 8 and 9.
This is an essential book for students and academicians alike. In addition to discussing theory, topics include the connection between stresses and strains in an isotropic elastic body, the geometry of strain, and much more. Deductions are explained in the simplest, most intuitive manner for wide accessibility. 1953 edition.