Download Free Foundations Of Physical Science Book in PDF and EPUB Free Download. You can read online Foundations Of Physical Science and write the review.

The centerpiece of Émilie Du Châtelet’s philosophy of science is her Foundations of Physics, first published in 1740. The Foundations contains epistemology, metaphysics, methodology, mechanics, and physics, including such pressing issues of the time as whether there are atoms, the appropriate roles of God and of hypotheses in scientific theorizing, how (if at all) bodies are capable of acting on one another, and whether gravity is an action-at-a-distance force. Du Châtelet sought to resolve these issues within a single philosophical framework that builds on her critique and appraisal of all the leading alternatives (Cartesian, Newtonian, Leibnizian, and so forth) of the period. The text is remarkable for being the first to attempt such a synthetic project, and even more so for the accessibility and clarity of the writing. This book argues that Du Châtelet put her finger on the central problems that lay at the intersection of physics and metaphysics at the time, and tackled them drawing on the most up-to-date resources available. It will be a useful source for students and scholars interested in the history and philosophy of science, and in the impact of women philosophers in the early modern period.
This is not an introduction to physics but an analysis of its founda tions. Indeed, the aims of this book are: (1) to analyze the form and content of some of the key ideas of physics; (2) to formulate several basic physical theories in an explicit and orderly (i. e. , axiomatic) fashion; (3) to exhibit their presuppositions and discuss some of their philosoph ical implications; (4) to discuss some of the controversial issues, and (5) to debunk certain dusty philosophical tenets that obscure the under standing of physics and hinder its progress. To the extent to which these goals are attained, the volume can serve as a companion to studies in theoretical physics aiming at deepening the understanding of the logical structure and the physical meaning of our science. In order to keep the book slender, whole fields of basic physical research had to be excluded - chiefly many-body physics, quantum field theories, and elementary particle theories. A large coverage was believed to be less important than a comparatively detailed analysis and reconstruction of three representative monuments: classical mechan ics, general relativity, and quantum mechanics, as well as their usually unrecognized presuppositions. The reader is invited to join the project and supply some of the many missing chapters - or to rewrite the present ones entirely.
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.
Foundations of Biophysics serves as an introductory textbook for physical science students to the principles and problems of the life sciences. The book offers to teach physical science students the basic vocabulary of the life sciences and the applications of physics and chemistry to a wide range of biological problems. Topics presented in the book include biological vocabulary and concepts; biological functions at the molecular level of each biological system; and commonly used tools of experimental biophysics. Students in the field of physics, chemistry, biology, and engineering will find the book a good learning material.
Foundations of Environmental Physics is designed to focus students on the current energy and environmental problems facing society, and to give them the critical thinking and computational skills needed to sort out potential solutions. From its pedagogical approach, students learn that a simple calculation based on first principles can often reveal the plausibility (or implausibility) of a proposed solution or new technology. Throughout its chapters, the text asks students to apply key concepts to current data (which they are required to locate using the Internet and other sources) to get a clearer picture of the most pressing issues in environmental science. The text begins by exploring how changes in world population impact all aspects of the environment, particularly with respect to energy use. It then discusses what the first and second laws of thermodynamics tell us about renewable and nonrenewable energy; how current energy use is changing the global climate; and how alternative technologies can be evaluated through scientific risk assessment. In approaching real-world problems, students come to understand the physical principles that underlie scientific findings. This informative and engaging textbook offers what prospective scientists, managers, and policymakers need most: the knowledge to understand environmental threats and the skills to find solutions.
FOUNDATIONS OF CHEMISTRY A foundation-level guide to chemistry for physical, life sciences and engineering students Foundations of Chemistry: An Introductory Course for Science Students fills a gap in the literature to provide a basic chemistry text aimed at physical sciences, life sciences and engineering students. The authors, noted experts on the topic, offer concise explanations of chemistry theory and the principles that are typically reviewed in most one year foundation chemistry courses and first year degree-level chemistry courses for non-chemists. The authors also include illustrative examples and information on the most recent applications in the field. Foundations of Chemistry is an important text that outlines the basic principles in each area of chemistry - physical, inorganic and organic - building on prior knowledge to quickly expand and develop a student's knowledge and understanding. Key features include: Worked examples showcase core concepts and practice questions. Margin comments signpost students to knowledge covered elsewhere and are used to highlight key learning objectives. Chapter summaries list the main concepts and learning points.
In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.