Download Free Foundations Of Parallel Programming Book in PDF and EPUB Free Download. You can read online Foundations Of Parallel Programming and write the review.

Foundations of Multithreaded, Parallel, and Distributed Programming covers, and then applies, the core concepts and techniques needed for an introductory course in this subject. Its emphasis is on the practice and application of parallel systems, using real-world examples throughout. Greg Andrews teaches the fundamental concepts of multithreaded, parallel and distributed computing and relates them to the implementation and performance processes. He presents the appropriate breadth of topics and supports these discussions with an emphasis on performance. Features Emphasizes how to solve problems, with correctness the primary concern and performance an important, but secondary, concern Includes a number of case studies which cover such topics as pthreads, MPI, and OpenMP libraries, as well as programming languages like Java, Ada, high performance Fortran, Linda, Occam, and SR Provides examples using Java syntax and discusses how Java deals with monitors, sockets, and remote method invocation Covers current programming techniques such as semaphores, locks, barriers, monitors, message passing, and remote invocation Concrete examples are executed with complete programs, both shared and distributed Sample applications include scientific computing and distributed systems 0201357526B04062001
This book is devoted to the most difficult part of concurrent programming, namely synchronization concepts, techniques and principles when the cooperating entities are asynchronous, communicate through a shared memory, and may experience failures. Synchronization is no longer a set of tricks but, due to research results in recent decades, it relies today on sane scientific foundations as explained in this book. In this book the author explains synchronization and the implementation of concurrent objects, presenting in a uniform and comprehensive way the major theoretical and practical results of the past 30 years. Among the key features of the book are a new look at lock-based synchronization (mutual exclusion, semaphores, monitors, path expressions); an introduction to the atomicity consistency criterion and its properties and a specific chapter on transactional memory; an introduction to mutex-freedom and associated progress conditions such as obstruction-freedom and wait-freedom; a presentation of Lamport's hierarchy of safe, regular and atomic registers and associated wait-free constructions; a description of numerous wait-free constructions of concurrent objects (queues, stacks, weak counters, snapshot objects, renaming objects, etc.); a presentation of the computability power of concurrent objects including the notions of universal construction, consensus number and the associated Herlihy's hierarchy; and a survey of failure detector-based constructions of consensus objects. The book is suitable for advanced undergraduate students and graduate students in computer science or computer engineering, graduate students in mathematics interested in the foundations of process synchronization, and practitioners and engineers who need to produce correct concurrent software. The reader should have a basic knowledge of algorithms and operating systems.
Parallel computers have become widely available in recent years. Many scientists are now using them to investigate the grand challenges of science, such as modeling global climate change, determining the masses of elementary particles from first principles, or sequencing the human genome. However, software for parallel computers has developed far more slowly than the hardware. Many incompatible programming systems exist, and many useful programming techniques are not widely known. Practical Parallel Programming provides scientists and engineers with a detailed, informative, and often critical introduction to parallel programming techniques. Following a review of the fundamentals of parallel computer theory and architecture, it describes four of the most popular parallel programming models in use today—data parallelism, shared variables, message passing, and Linda—and shows how each can be used to solve various scientific and numerical problems. Examples, coded in various dialects of Fortran, are drawn from such domains as the solution of partial differential equations, solution of linear equations, the simulation of cellular automata, studies of rock fracturing, and image processing. Practical Parallel Programming will be particularly helpful for scientists and engineers who use high-performance computers to solve numerical problems and do physical simulations but who have little experience of networking or concurrency. The book can also be used by advanced undergraduate and graduate students in computer science in conjunction with material covering parallel architectures and algorithms in more detail. Computer science students will gain a critical appraisal of the current state of the art in parallel programming. Scientific and Engineering Computation series
Advancements in microprocessor architecture, interconnection technology, and software development have fueled rapid growth in parallel and distributed computing. However, this development is only of practical benefit if it is accompanied by progress in the design, analysis and programming of parallel algorithms. This concise textbook provides, in one place, three mainstream parallelization approaches, Open MPP, MPI and OpenCL, for multicore computers, interconnected computers and graphical processing units. An overview of practical parallel computing and principles will enable the reader to design efficient parallel programs for solving various computational problems on state-of-the-art personal computers and computing clusters. Topics covered range from parallel algorithms, programming tools, OpenMP, MPI and OpenCL, followed by experimental measurements of parallel programs’ run-times, and by engineering analysis of obtained results for improved parallel execution performances. Many examples and exercises support the exposition.
Parallel implementation of algorithms involves many difficult problems. In particular among them are round-off analysis, the way to convert sequential programs and algorithms into the parallel mode, the choice of appropriate or optimal computer architect and so on. To solve these problems, it is necessary to know very well the structure of algorithms. This book deal with the mathematical mechanism that permits us to investigate structures of both sequential and parallel algorithms. This mechanism allows us to recognize and explain the relations between different methods of constructing parallel algorithms, the methods of analysing round-off errors, the methods of optimizing memory traffic, the methods of working out the fastest implementation for a given parallel computer and other methods attending the joint investigation of algorithms and computers.
Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors' open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. - Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ - Contains numerous practical parallel programming exercises - Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program - Features an example-based teaching of concept to enhance learning outcomes
Mathematics of Computing -- Parallelism.
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
This is the first comprehensive account of this new approach to the fundamentals of parallel programming.