Download Free Foundations Of Modern Physics Book in PDF and EPUB Free Download. You can read online Foundations Of Modern Physics and write the review.

Nobel Laureate Steven Weinberg explains the foundations of modern physics in historical context for undergraduates and beyond.
Our understanding of the physical world was revolutionized in the twentieth century — the era of “modern physics''. This book, aimed at the very best students, presents the foundations and frontiers of today's physics. It focuses on the following topics: quantum mechanics; applications in atomic, nuclear, particle, and condensed-matter physics; special relativity; relativistic quantum mechanics, including the Dirac equation and Feynman diagrams; quantum fields; and general relativity. The aim is to cover these topics in sufficient depth such that things “make sense'' to students and they can achieve an elementary working knowledge of them. Many problems are included, a great number of which take dedicated readers just as far as they want to go in modern physics. Although the book is designed so that one can, in principle, read and follow the text without doing any of the problems, the reader is urged to attempt as many of them as possible. Several appendices help bring the reader up to speed on any additional required mathematics. With very few exceptions, the reader should then find the text, together with the appendices and problems, to be self-contained.
Our understanding of the physical world was revolutionized in the twentieth century — the era of “modern physics”. This book, aimed at the very best students, extends the coverage of the theoretical groundwork of today's physics presented in the previous volume: Introduction to Modern Physics: Theoretical Foundations (Vol. I). Typically, students have to wade through several courses to see many of these topics. The goal is to give them some idea of where they are going, and how things fit together, as they go along.The present book focuses on the following topics: reformulation of quantum mechanics, angular momentum, scattering theory, lagrangian field theory, symmetries, Feynman rules, quantum electrodynamics, including higher-order contributions, path integrals, and canonical transformations for quantum systems. Many problems are included that enhance and extend the coverage. The book assumes a mastery of the material in Vol. I, and the continued development of mathematical skills, including multivariable calculus and linear algebra. Several appendices provide important details, and any additional required mathematics. The reader should then find the text, together with the appendices and problems, to be self-contained. The aim is to cover the framework of modern theoretical physics in sufficient depth that things “make sense” to students, and, when finished, the reader should have an elementary working knowledge in the principal areas of theoretical physics of the twentieth century.
While the two previous books entitled Introduction to Modern Physics: Theoretical Foundations and Advanced Modern Physics: Theoretical Foundations exposed the reader to the foundations and frontiers of today's physics, the goal of this third volume is to cover in some detail several topics omitted in the essentially linear progression of the first two.This book is divided into three parts. Part 1 is on quantum mechanics. Analytic solutions to the Schrödinger equation are developed for some basic systems. The analysis is then formalized, concluding with a set of postulates for the theory. Part 2 is on applications of quantum mechanics: approximation methods for bound states, scattering theory, time-dependent perturbation theory, and electromagnetic radiation and quantum electrodynamics. Part 3 covers some selected topics in relativistic quantum field theory: discrete symmetries, the Heisenberg picture, and the Feynman rules for quantum chromodynamics.The three volumes in this series taken together provide a clear, logical, self-contained, and comprehensive base from which the very best students can learn modern physics. When finished, readers should have an elementary working knowledge in the principal areas of theoretical physics of the twentieth century.
Recent discoveries in astronomy have revolutionized the field of cosmology. While many long-standing questions in cosmology have now been answered, the new data pose new mysteries such as the nature of the "dark energy" that dominates the universe. This second edition provides an accessible and thorough text on the physics of cosmology and a lively account of the modern concordance model of the universe, from the big bang to a distant future dominated by dark energy.
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
This fascinating work goes beyond the standard interpretation of quantum theory to explore its fundamental concepts. Author Dipankar Home examines such alternative schemes as the Bohmian approach, the decoherence models, and the dynamical models of wave function collapse. Home carefully explains how a number of the anomalies in quantum theory have become amenable to precise quantitative formulations Throughout the chapters, the emphasis is on conceptual aspects of quantum theory and the implications of recent investigations into these questions.
Stars -- Binaries -- The interstellar medium -- Galaxies.
For scientific, technological and organizational reasons, the end of World War II (in 1945) saw a rapid acceleration in the tempo of discovery and understanding in nuclear physics, cosmic rays and quantum field theory, which together triggered the birth of modern particle physics. The first fifteen years (1945-60) following the war's end ? the ?Startup Period? in modern particle physics -witnessed a series of major experimental and theoretical developments that began to define the conceptual contours (non-Abelian internal symmetries, Yang-Mills fields, renormalization group, chirality invariance, baryon-lepton symmetry in weak interactions, spontaneous symmetry breaking) of the quantum field theory of three of the basic interactions in nature (electromagnetic, strong and weak). But it took another fifteen years (1960-75) ? the ?Heroic Period? in modern particle physics ? to unravel the physical content and complete the mathematical formulation of the standard gauge theory of the strong and electroweak interactions among the three generations of quarks and leptons. The impressive accomplishments during the ?Heroic Period? were followed by what is called the ?period of consolidation and speculation (1975-1990)?, which includes the experimental consolidation of the standard model (SM) through precision tests, theoretical consolidation of SM through the search for more rigorous mathematical solutions to the Yang-Mills-Higgs equations, and speculative theoretical excursions ?beyond SM?.Within this historical-conceptual framework, the author ? himself a practicing particle theorist for the past fifty years ? attempts to trace the highlights in the conceptual evolution of modern particle physics from its early beginnings until the present time. Apart from the first chapter ? which sketches a broad overview of the entire field ? the remaining nine chapters of the book offer detailed discussions of the major concepts and principles that prevailed and were given wide currency during each of the fifteen-year periods that comprise the history of modern particle physics. Those concepts and principles that contributed only peripherally to the standard model are given less coverage but an attempt is made to inform the reader about such contributions (which may turn out to be significant at a future time) and to suggest references that supply more information. Chapters 2 and 3 of the book cover a range of topics that received dedicated attention during the ?Startup Period? although some of the results were not incorporated into the structure of the standard model. Chapters 4-6 constitute the core of the book and try to recapture much of the conceptual excitement of the ?Heroic Period?, when quantum flavordynamics (QFD) and quantum chromodynamics (QCD) received their definitive formulation. [It should be emphasized that, throughout the book, logical coherence takes precedence over historical chronology (e.g. some of the precision tests of QFD are discussed in Chapter 6)]. Chapter 7 provides a fairly complete discussion of the chiral gauge anomalies in four dimensions with special application to the standard model (although the larger unification models are also considered). The remaining three chapters of the book (Chapters 7-10) cover concepts and principles that originated primarily during the ?Period of Consolidation and Speculation? but, again, this is not a literal statement. Chapters 8 and 9 report on two of the main directions that were pursued to overcome acknowledged deficiencies of the standard model: unification models in Chapter 8 and attempts to account for the existence of precisely three generations of quarks and leptons, primarily by means of preon models, in Chapter 9. The most innovative of the final three chapters of the book is Chapter 10 on topological conservation laws. This last chapter tries to explain the significance of topologically non-trivial solutions in four-dimensional (space-time) particle physics (e.g. 't Hooft-Polyakov monopoles, instantons, sphalerons, global SU(2) anomaly, Wess-Zumino term, etc.) and to reflect on some of the problems that have ensued (e.g. the ?strong CP problem? in QCD) from this effort. It turns out that the more felicitous topological applications of field theory are found ? as of now ? in condensed matter physics; these successful physical applications (to polyacetylene, quantized magnetic flux in type-II low temperature superconductivity, etc.) are discussed in Chapter 10, as a good illustration of the conceptual unity of modern physics.