Download Free Formation Characterization And Applications Of Gold Nanoparticles And Surface Modified Gold Book in PDF and EPUB Free Download. You can read online Formation Characterization And Applications Of Gold Nanoparticles And Surface Modified Gold and write the review.

Gold and Silver Nanoparticles: Synthesis and Applications provides detailed information on the preparation and utilization of Au- and Ag-based nanoparticles in a range of novel areas. Gold and silver nanoparticles offer a range of interesting properties, including unique size-dependent optoelectronic properties, chemical stability and biocompatibility, ease of synthesis and surface modification, excellent resistance to corrosion, and catalytic properties, hence paving the way to a wide range of cutting-edge applications with continual advances and innovations. Sections introduce gold and silver nanoparticles, fundamental theory, synthesis, and characterization techniques before focusing on requirements and preparation methods. Specific applications areas, such as surface-enhanced Raman spectroscopy (SERS), sensing and biosensing, imaging, drug and gene delivery, disease diagnosis, catalysis, and optoelectronic device fabrication are covered. Finally, synthesis and applications of platinum- and palladium-based nanoparticles are discussed. This is a valuable resource for researchers and advanced students across nanoscience and nanotechnology, chemistry, and materials science, as well as scientists, engineers, and R&D professionals with an interest in noble metal nanomaterials for a range of industrial applications. Explains theory, synthesis, characterization, and properties of Au- and Ag- based nanoparticles Explores a range of novel applications across biomedicine, optoelectronics, and other areas Analyzes the latest developments in the field and considers noble metal nanoparticles beyond gold and silver
This dissertation presents a systematic study on gold nanoparticles: from their chemical synthesis, modification of surface functionalities, optical properties studies with emphasis on the absorption and scattering properties, to applications of gold nanoparticles in biomolecular detection, imaging and photothermal therapy. In chapter 2, we studied the kinetics of gold nanoparticle growth under Brust-Shiffrin reaction conditions. In chapter 3, we further examined the reaction mechanism and growth kinetics of gold nanoparticles using oleylamine as both a reducing reagent and particle growth passivation ligand. From these two projects, important understanding was revealed on gold nanoparticle formation and growth mechanism. Chapter 4 describes the synthesis of a monofunctional gold nanoparticle through a solid phase place exchange reaction. From Chapter 5, we moved to the optical property study of gold nanoparticles, particularly the absorption and scattering phenomenon. In this work a systematic analysis on the extinction coefficient of gold nanoparticles was performed, providing meaningful references for applications based on optical absorption properties of gold nanoparticles. In Chapter 6 and Chapter 7, we developed a one-step homogeneous immunoassay for protein detection and analysis based on the strong light scattering of gold nanoparticles and dynamic light scattering detection technique. In Chapter 8, we further improved the stability of gold nanoparticle bioconjugates using a poly(ethylene glycol)-coated gold nanoparticles and further tested this nanoparticle in the one-step homogeneous immunoassay. Finally in Chapter 9, we demonstrated the application of gold nanoparticles for in vitro bioimaging and photothermal therapy of a lung cancer cell. In summary, this dissertation presents a comprehensive study on the synthesis, surface modification, property study of gold nanoparticles and their applications in biomolecular imaging and analysis.
The modern fascination with micro- and nano-sized materials can actually be traced back further to the 1960s and ‘70s when the first few reported attempts were made to use nanoparticles for controlled drug delivery. In Nanoparticles in Biology and Medicine: Methods and Protocols, experts in the field present a wide range of methods for synthesis, surface modification, characterization, and application of nano-sized materials (nanoparticles) in life science and medical fields, mostly for drug delivery. The methods presented cover all stages of nanoparticle manufacturing, modification, analysis, and applications. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Nanoparticles in Biology and Medicine: Methods and Protocols will help the beginner become familiar with this fascinating field and will provide scientists at all levels of expertise with easy-to-follow practical advice needed to make, modify, and analyze nanoparticles of their choice and to use them in a wide range of biomedical and pharmaceutical applications, including functional protein studies, drug delivery, immunochemistry, imaging, and many others.
The unique properties of gold nanoparticles make them excellent candidates for applications in electronics, sensing, imaging, and photothermal therapy. Though abundant literature exists for isotropic gold nanoparticles, work on nanoparticles of different shapes has been gaining interest recently. Anisotropic gold nanoparticles, such as nanorods and nanoprisms, have tunable optical properties in the visible and near-infrared regions. Through synthesis and surface modification, the production of various shapes of these gold nanoparticles can be controlled to meet different applications. Two different types of gold nanorods were used in this thesis. The first type was stabilized with cetyltrimethylammonium bromide (CTAB) and had aspect ratios of 3-4 (defined as the nanorod length divided by the diameter). The second type was synthesized using CTAB and benzyldimethylhexadecylammonium chloride (BDAC) in a binary surfactant system which produced aspect ratios greater than 4. The nanorods were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). Two types of bowl-shaped macrocyclic compounds called resorcinarenes were used to direct self-assembly of the nanorods. The first type of resorcinarene (R2S) consisted of thiol(SH)-terminated alkyl chains on both rims. The second type (R1S) contained thiol-terminated alkyl chains on only one rim. The monolayer formation of these resorcinarenes on planar gold surfaces was studied and characterized by FTIR spectroscopy. Resorcinarene-mediated assembly of gold nanorods was monitored with UV-Vis spectroscopy, dynamic light scattering (DLS), and TEM. In addition to gold nanorods, gold nanoprisms were synthesized through a kinetically-controlled reduction route in the presence of CTAB. The linking of nanoprisms using resorcinarenes was also explored.
Gold Nanoparticles - Reaching New Heights contains recent research on the preparation, characterization, fabrication, and potential of optical and biological applications of gold nanoparticles (AuNPs). It is promising novel research that has received a lot of interest over the last few decades. It covers advanced topics on optical, physical, medicinal, and biological applications of AuNPs. Development of green nanotechnology is generating the interest of researchers towards the synthesis of eco-friendly, safe, non-toxic applications, which can be used for manufacture at a large scale. These are simple, cost-effective, stable, enduring, and reproducible aqueous room temperature synthesis applications to obtain the self-assembly of AuNPs. This potentially unique work offers various approaches to R
Gold has traditionally been regarded as inactive as a catalytic metal. However, the advent of nanoparticulate gold on high surface area oxide supports has demonstrated its high catalytic activity in many chemical reactions. Gold is active as a heterogeneous catalyst in both gas and liquid phases, and complexes catalyse reactions homogeneously in solution. Many of the reactions being studied will lead to new application areas for catalysis by gold in pollution control, chemical processing, sensors and fuel cell technology. This book describes the properties of gold, the methods for preparing gold catalysts and ways to characterise and use them effectively in reactions. The reaction mechanisms and reasons for the high activities are discussed and the applications for gold catalysis considered./a
Due to their attractive electronic, optical, and thermal properties; gold nanoparticles (AuNPs) have emerged with great interest, as well as catalytic properties, in the fields of physics, chemistry, biology, medicine, material science and some interdisciplinary fields. This book examines a broad range of applications of gold nanoparticles such as: gold nanoparticles as an antigen carrier and as an adjuvant; laser synthesis of gold nanoparticles and the control over their properties; gold on carbon catalysts; gold nanoparticles as a delivery vehicle in biomedical applications; solution and solid-state methods to prepare Au nanoparticles; gold nanoparticles and their in-vitro property, the usefulness of gold nanoparticles in emerging infectious disease situations and a host of others.
The fascination with gold is a story which spans millennia, however scientists have recently found a new interest for gold when it is divided into miniscule grains, such as gold nanoparticles. This scientific enthusiasm started in various fields of science in the middle of the 1980s and the present book offers a panorama of the major scientific achievements obtained with gold nanoparticles.Various topics are reviewed such as: gold nanoparticle preparation methods, their plasmon resonance and thermo-optical properties, their catalytic properties, their use in biology and medicine as well as their possible toxicity and, finally, their future technological applications. The book also contains an in-depth study of the use of gold nanoparticles throughout the ages, starting from times where the concept of nanoparticles was beyond the realm of human imagination. All these topics are presented by world-class scientists within a set of self-contained chapters.This book may be used as an advanced textbook by graduate students and scientists who need an introduction to gold nanoparticles. It is also suitable for experts in the related areas of chemistry, biology, material science, optics and physics, who are interested in broadening their knowledge and who wish to have an overview of the subject. Each chapter gradually leads the reader from the basics of a topic towards some of the current scientific challenges in the area. The necessary background material to achieve a solid understanding of each topic and the scientific literature to go further in the field is provided.
Completely dedicated to the biomedical applications of metal nanoparticles, this book covers the different toxicity problems found in healthcare situations and also provides comprehensive info on the use of metal nanoparticles in treating various diseases. Metal Nanoparticles in Pharma is the first edited volume to set up the discussion for a clinical setting and to target a pharmaceutical audience of academic and industry-based researchers.