Download Free Formal Structure Of Electromagnetics Book in PDF and EPUB Free Download. You can read online Formal Structure Of Electromagnetics and write the review.

High-level, explicit treatment of the principle of general covariance as applied to electromagnetics examines the natural invariance of the Maxwell equations, general properties of the medium, nonuniformity, anisotropy and general coordinates in three-space, reciprocity and nonreciprocity, and matter-free space with a gravitational field. 1962 edition.
The book deals with formal aspects of electromagnetic theory from the classical, the semiclassical and the quantum viewpoints in essays written by internationally distinguished scholars from several countries. The fundamental basis of electromagnetic theory is examined in order to elucidate Maxwell's equations, identify problematic aspects as well as outstanding problems, suggest ways and means of overcoming the obstacles, and review existing literature.This book will be especially valuable for those who wish to go in depth, rather than simply use Maxwell's equations for the solution of engineering problems. Graduate students will find it rich in dissertation topics, and advanced researchers will relish the controversial and detailed arguments and models.
This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for today's applications in wireless power transfers, NFC, and metamaterials. This book is organized into clear and logical sections spanning from fundamental theory, to applications, promoting clear understanding through-out. This resource presents the theory of electromagnetic near fields including chapters on reactive energy, spatial and spectral theory, the scalar antenna, and the morphogenesis of electromagnetic radiation in the near field zone. The Antenna Current Green's Function Formalism is explored with an emphasis on the foundations, the organic interrelationships between the fundamental operational modes of general antenna systems, and the spectral approach to antenna-to-antenna interactions. The book offers perspective on nonlocal metamaterials, including the material response theory, the far-field theory, and the near-field theory.
The NATO Advanced Research Workshop Bianisotropics 2002 was held in th Marrakesh, Morocco, during 8-11 May 2002. This was the 9 International Conference on Electromagnetics of Complex Media, belonging to a series of meetings where the focus is on electromagnetics of chiral, bianisotropic, and other materials that may respond to electric and magnetic field excitations in special manner. The first of these meetings was held in Espoo, Finland (1993), and the following venues were Gomel, Belarus (1993), Perigueux, France (1994), State College, Pennsylvania, USA (1995), the rivers and channels between St. Petersburg and Moscow in Russia (1996), Glasgow, Scotland (1997), Brunswick, Germany (1998), and Lisbon, Portugal (2000). The present book contains full articles of several of the presentations that were given in the Marrakesh conference. In Bianisotropics 2002, 8 re view lectures, 14 invited lectures and 68 contributed talks and posters were presented. Of these presentations, after a double review process, 28 contributions have achieved their final form on the pages to follow. From the contributions ofthe meeting, also another publication is being planned: a Special Issue of the journal Electromagnetics will be devoted to complex materials. Guest editors for this issue are Keith W. Whites and Said Zouhdi. The chairmen of Bianisotropics 2002conference were Said Zouhdi (Pierre et Marie Curie University - Paris) and Mohamed Arsalane (Cadi Ayyad University - Marrakesh), who were assisted by Scientists from Moroccan Universities and the International Bianisotropics Conference Committee.
Providing an ideal transition from introductory to advanced concepts, Electromagnetics, Second Edition builds a foundation that allows electrical engineers to confidently proceed with the development of advanced EM studies, research, and applications. This second edition of a popular text continues to offer coverage that spans the entire field, from electrostatics to the integral solutions of Maxwell’s equations. The book provides a firm grounding in the fundamental concepts of electromagnetics and bolsters understanding through the use of classic examples in shielding, transmission lines, waveguides, propagation through various media, radiation, antennas, and scattering. Mathematical appendices present helpful background information in the areas of Fourier transforms, dyadics, and boundary value problems. The second edition adds a new and extensive chapter on integral equation methods with applications to guided waves, antennas, and scattering. Utilizing the engaging style that made the first edition so appealing, this second edition continues to emphasize the most enduring and research-critical electromagnetic principles.
Positioning itself at the common boundaries of several disciplines, this work provides new perspectives on modern nanoscale problems where fundamental science meets technology and computer modeling. In addition to well-known computational techniques such as finite-difference schemes and Ewald summation, the book presents a new finite-difference calculus of Flexible Local Approximation Methods (FLAME) that qualitatively improves the numerical accuracy in a variety of problems.
This book describes the most recent advances in electromagnetic theory, motivated and partly informed by developments in engineering science and nanotechnology. The collection of chapters provided in this edited book, authored by leading experts in the field, offers a bird’s eye view of recent progress in electromagnetic theory, spanning a wide range of topics of current interest, ranging from fundamental issues to applications.​
This text is intended to help expand knowledge of electromagnetic theory. It integrates principles of quantum physics to electromagnetics with the aim of producing electromagnetic devices with more desirable performance features.