Download Free Formal Power Series And Linear Systems Of Meromorphic Ordinary Differential Equations Book in PDF and EPUB Free Download. You can read online Formal Power Series And Linear Systems Of Meromorphic Ordinary Differential Equations and write the review.

Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series.
Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series.
The book provides the reader with an overview of the actual state of research in ordinary and partial differential equations in the complex domain. Topics include summability and asymptotic study of both ordinary and partial differential equations, and also q-difference and differential-difference equations. This book will be of interest to researchers and students who wish to expand their knowledge of these fields.With the latest results and research developments and contributions from experts in their field, Formal and Analytic Solutions of Differential Equations provides a valuable contribution to methods, techniques, different mathematical tools, and study calculations.
With a balanced combination of longer survey articles and shorter, peer-reviewed research-level presentations on the topic of differential and difference equations on the complex domain, this edited volume presents an up-to-date overview of areas such as WKB analysis, summability, resurgence, formal solutions, integrability, and several algebraic aspects of differential and difference equations.
Topology is a relatively young and very important branch of mathematics, which studies the properties of objects that are preserved through deformations, twistings, and stretchings. This book deals with the topology of curves and surfaces as well as with the fundamental concepts of homotopy and homology, and does this in a lively and well-motivated way. This book is well suited for readers who are interested in finding out what topology is all about.
The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.
This comprehensive volume develops all of the standard features of Fourier analysis - Fourier series, Fourier transform, Fourier sine and cosine transforms, and wavelets. The books approach emphasizes the role of the "selector" functions, and is not embedded in the usual engineering context, which makes the material more accessible to a wider audience. While there are several publications on the various individual topics, none combine or even include all of the above.
Introductory Probability is a pleasure to read and provides a fine answer to the question: How do you construct Brownian motion from scratch, given that you are a competent analyst? There are at least two ways to develop probability theory. The more familiar path is to treat it as its own discipline, and work from intuitive examples such as coin flips and conundrums such as the Monty Hall problem. An alternative is to first develop measure theory and analysis, and then add interpretation. Bhattacharya and Waymire take the second path.
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.