Download Free Formal Methods For Real Time And Probabilistic Systems Book in PDF and EPUB Free Download. You can read online Formal Methods For Real Time And Probabilistic Systems and write the review.

This book constitutes the refereed proceedings of the Fifth International AMAST Workshop on Formal Methods for Real-Time and Probabilistic Systems, ARTS '99, held in Bamberg, Germany in May 1999. The 17 revised full papers presented together with three invited contributions were carefully reviewed and selected from 33 submissions. The papers are organized in topical sections on verification of probabilistic systems, model checking for probabilistic systems, semantics of probabilistic process calculi, semantics of real-time processes, real-time compilation, stochastic process algebra, and modeling and verification of real-time systems.
This book constitutes the refereed proceedings of the Fifth International AMAST Workshop on Formal Methods for Real-Time and Probabilistic Systems, ARTS '99, held in Bamberg, Germany in May 1999. The 17 revised full papers presented together with three invited contributions were carefully reviewed and selected from 33 submissions. The papers are organized in topical sections on verification of probabilistic systems, model checking for probabilistic systems, semantics of probabilistic process calculi, semantics of real-time processes, real-time compilation, stochastic process algebra, and modeling and verification of real-time systems.
This title is devoted to presenting some of the most important concepts and techniques for describing real-time systems and analyzing their behavior in order to enable the designer to achieve guarantees of temporal correctness. Topics addressed include mathematical models of real-time systems and associated formal verification techniques such as model checking, probabilistic modeling and verification, programming and description languages, and validation approaches based on testing. With contributions from authors who are experts in their respective fields, this will provide the reader with the state of the art in formal verification of real-time systems and an overview of available software tools.
This book constitutes the refereed proceedings of the 6th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2000, held in Pune, India in September 2000. The 21 revised full papers presented together with three invited contributions were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on model checking, fault tolerance, scheduling, validation, verification, logic and automata.
This dissertation presents methods for the formal modeling and specification of probabilistic systems, and algorithms for the automated verification of these systems. Our system models describe the behavior of a system in terms of probability, nondeterminism, fairness and time.
Originally published in 2002, this book presents techniques in the application of formal methods to object-based distributed systems. A major theme of the book is how to formally handle the requirements arising from OO distributed systems, such as dynamic reconfiguration, encapsulation, subtyping, inheritance, and real-time aspects. These may be supported either by enhancing existing notations, such as UML, LOTOS, SDL and Z, or by defining fresh notations, such as Actors, Pi-calculus and Ambients. The major specification notations and modelling techniques are introduced and compared by leading researchers. The book also includes a description of approaches to the specification of non-functional requirements, and a discussion of security issues. Researchers and practitioners in software design, object-oriented computing, distributed systems, and telecommunications systems will gain an appreciation of the relationships between the major areas of concerns and learn how the use of object-oriented based formal methods provides workable solutions.
Traditionally, models and methods for the analysis of the functional correctness of reactive systems, and those for the analysis of their performance (and - pendability) aspects, have been studied by di?erent research communities. This has resulted in the development of successful, but distinct and largely unrelated modeling and analysis techniques for both domains. In many modern systems, however, the di?erence between their functional features and their performance properties has become blurred, as relevant functionalities become inextricably linked to performance aspects, e.g. isochronous data transfer for live video tra- mission. During the last decade, this trend has motivated an increased interest in c- bining insights and results from the ?eld of formal methods – traditionally - cused on functionality – with techniques for performance modeling and analysis. Prominent examples of this cross-fertilization are extensions of process algebra and Petri nets that allow for the automatic generation of performance models, the use of formal proof techniques to assess the correctness of randomized - gorithms, and extensions of model checking techniques to analyze performance requirements automatically. We believe that these developments markthe - ginning of a new paradigm for the modeling and analysis of systems in which qualitative and quantitative aspects are studied from an integrated perspective. We are convinced that the further worktowards the realization of this goal will be a growing source of inspiration and progress for both communities.
A large class of computing systems can be specified and verified by abstracting away from the temporal aspects of their behavior. In real-time systems,instead, time issues become essential. Their correctness depends not only on which functions they can perform, but also on the action execution time. Due to their importance and design challenges, real-time systems have attracted the attention of a considerable number of computer scientists and engineers from various research areas. This volume collects a set of papers accompanying the lectures of the fourth edition of the International School on Formal Methods for the Design of Computer, Communication and Software Systems (SFM). The school addressed the use of formal methods in computer science as a prominent approach to the r- orous design of computer, communication and software systems. The main aim of the SFM series is to o?er a good spectrum of current research in foundations as well as applications of formal methods, which can be of help for graduate students and young researchers who intend to approach the field. SFM-04:RT was devoted to real-time systems. It covered formal models and languages for the specification,modeling,analysis,and verification of the seti- critical systems, the expressiveness of such models and languages, as well as supporting tools and related applications in different domains.
FORTE 2001, formerly FORTE/PSTV conference, is a combined conference of FORTE (Formal Description Techniques for Distributed Systems and Communication Protocols) and PSTV (Protocol Specification, Testing and Verification) conferences. This year the conference has a new name FORTE (Formal Techniques for Networked and Distributed Systems). The previous FORTE began in 1989 and the PSTV conference in 1981. Therefore the new FORTE conference actually has a long history of 21 years. The purpose of this conference is to introduce theories and formal techniques applicable to various engineering stages of networked and distributed systems and to share applications and experiences of them. This FORTE 2001 conference proceedings contains 24 refereed papers and 4 invited papers on the subjects. We regret that many good papers submitted could not be published in this volume due to the lack of space. FORTE 2001 was organized under the auspices of IFIP WG 6.1 by Information and Communications University of Korea. It was financially supported by Ministry of Information and Communication of Korea. We would like to thank every author who submitted a paper to FORTE 2001 and thank the reviewers who generously spent their time on reviewing. Special thanks are due to the reviewers who kindly conducted additional reviews for rigorous review process within a very short time frame. We would like to thank Prof. Guy Leduc, the chairman of IFIP WG 6.1, who made valuable suggestions and shared his experiences for conference organization.