Download Free Formal And Practical Aspects Of Autonomic Computing And Networking Specification Development And Verification Book in PDF and EPUB Free Download. You can read online Formal And Practical Aspects Of Autonomic Computing And Networking Specification Development And Verification and write the review.

Autonomic computing and networking (ACN), a concept inspired by the human autonomic system, is a priority research area and a booming new paradigm in the field. Formal and Practical Aspects of Autonomic Computing and Networking: Specification, Development, and Verification outlines the characteristics, novel approaches of specification, refinement, programming and verification associated with ACN. The goal of ACN and the topics covered in this work include making networks and computers more self-organized, self- configured, self-healing, self-optimizing, self-protecting, and more. This book helpfully details the steps necessary towards realizing computer and network autonomy and its implications.
Despite the growing mainstream importance and unique advantages of autonomic networking-on-chip (ANoC) technology, Autonomic Networking-On-Chip: Bio-Inspired Specification, Development, and Verification is among the first books to evaluate research results on formalizing this emerging NoC paradigm, which was inspired by the human nervous system. The FIRST Book to Assess Research Results, Opportunities, & Trends in "BioChipNets" The third book in the Embedded Multi-Core Systems series from CRC Press, this is an advanced technical guide and reference composed of contributions from prominent researchers in industry and academia around the world. A response to the critical need for a global information exchange and dialogue, it is written for engineers, scientists, practitioners, and other researchers who have a basic understanding of NoC and are now ready to learn how to specify, develop, and verify ANoC using rigorous approaches. Offers Expert Insights Into Technical Topics Including: Bio-inspired NoC How to map applications onto ANoC ANoC for FPGAs and structured ASICs Methods to apply formal methods in ANoC development Ways to formalize languages that enable ANoC Methods to validate and verify techniques for ANoC Use of "self-" processes in ANoC (self-organization, configuration, healing, optimization, protection, etc.) Use of calculi for reasoning about context awareness and programming models in ANoC With illustrative figures to simplify contents and enhance understanding, this resource contains original, peer-reviewed chapters reporting on new developments and opportunities, emerging trends, and open research problems of interest to both the autonomic computing and network-on-chip communities. Coverage includes state-of-the-art ANoC architectures, protocols, technologies, and applications. This volume thoroughly explores the theory behind ANoC to illustrate strategies that enable readers to use formal ANoC methods yet still make sound judgments and allow for reasonable justifications in practice.
The LNCS journal Transactions on Computational Science reflects recent developments in the field of Computational Science, conceiving the field not as a mere ancillary science but rather as an innovative approach supporting many other scientific disciplines. The journal focuses on original high-quality research in the realm of computational science in parallel and distributed environments, encompassing the facilitating theoretical foundations and the applications of large-scale computations and massive data processing. It addresses researchers and practitioners in areas ranging from aerospace to biochemistry, from electronics to geosciences, from mathematics to software architecture, presenting verifiable computational methods, findings, and solutions and enabling industrial users to apply techniques of leading-edge, large-scale, high performance computational methods. The 15th issue of the Transactions on Computational Science journal, edited by Cong-Vinh Phan, contains six invited papers on autonomic computing, with a special focus on formal engineering methods for nature-inspired computing systems. The papers give an in-depth overview of the area and a comprehensive evaluation of various methodologies for autonomic computing.
Autonomic Intelligence Evolved Cooperative Networking offers a comprehensive advancement of the state-of-the art technological developments in the fields of Cooperative Networking and Autonomic Computing. Based on his track record in industrial standardisation, as well as academic and applied research, the author presents a fully-fledged Autonomic Cooperative Networking Architectural Model that encompasses the relevant workings of both the Layers of the Open Systems Interconnection Reference Model and the Levels of the Generic Autonomic Network Architecture. .
This book presents the thoroughly refereed and revised post-workshop proceedings of the 16th Monterey Workshop, held in Redmond, WA, USA, in March/April 2010. The theme of the workshop was Foundations of Computer Software, with a special focus on Modeling, Development, and Verification of Adaptive Systems. The 13 revised full papers presented were carefully reviewed and selected from numerous submissions for inclusion in the book. The contributions show how the foundations and development techniques of computer software could be adapted even for industrial safety-critical and business-critical applications to improve dependability and robustness and to ensure information privacy and security.
"Nature-inspired" includes, roughly speaking, "bio-inspired"+"physical-inspired"+"social-inspired"+ and so on. This book contains highly original contributions about how nature is going to shape networking systems of the future. Hence, it focuses on rigorous approaches and cutting-edge solutions, which encompass three classes of major methods: 1) Those that take inspiration from nature for the development of novel problem solving techniques; 2) Those that are based on the use of networks to synthesize natural phenomena; and 3) Those that employ natural materials to compute or communicate.
"This book bridges the gap between solutions and users' needs pertaining to the most relevant open source cloud technologies available today from a practical perspective"--
From the Foreword "Getting CPS dependability right is essential to forming a solid foundation for a world that increasingly depends on such systems. This book represents the cutting edge of what we know about rigorous ways to ensure that our CPS designs are trustworthy. I recommend it to anyone who wants to get a deep look at these concepts that will form a cornerstone for future CPS designs." --Phil Koopman, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA Trustworthy Cyber-Physical Systems Engineering provides practitioners and researchers with a comprehensive introduction to the area of trustworthy Cyber Physical Systems (CPS) engineering. Topics in this book cover questions such as What does having a trustworthy CPS actually mean for something as pervasive as a global-scale CPS? How does CPS trustworthiness map onto existing knowledge, and where do we need to know more? How can we mathematically prove timeliness, correctness, and other essential properties for systems that may be adaptive and even self-healing? How can we better represent the physical reality underlying real-world numeric quantities in the computing system? How can we establish, reason about, and ensure trust between CPS components that are designed, installed, maintained, and operated by different organizations, and which may never have really been intended to work together? ? Featuring contributions from leading international experts, the book contains sixteen self-contained chapters that analyze the challenges in developing trustworthy CPS, and identify important issues in developing engineering methods for CPS. The book addresses various issues contributing to trustworthiness complemented by contributions on TCSP roadmapping, taxonomy, and standardization, as well as experience in deploying advanced system engineering methods in industry. Specific approaches to ensuring trustworthiness, namely, proof and refinement, are covered, as well as engineering methods for dealing with hybrid aspects.
This book presents the thoroughly refereed and revised post-workshop proceedings of the 17th Monterey Workshop, held in Oxford, UK, in March 2012. The workshop explored the challenges associated with the Development, Operation and Management of Large-Scale complex IT Systems. The 21 revised full papers presented were significantly extended and improved by the insights gained from the productive and lively discussions at the workshop, and the feedback from the post-workshop peer reviews.
Artificial intelligence is a constantly advancing field that requires models in order to accurately create functional systems. The use of natural acumen to create artificial intelligence creates a field of research in which the natural and the artificial meet in a new and innovative way. Critical Developments and Applications of Swarm Intelligence is a critical academic publication that examines developing research, technologies, and function regarding natural and artificial acumen specifically, in regards to self-organized systems. Featuring coverage on a broad range of topics such as evolutionary algorithms, optimization techniques, and computational comparison, this book is geared toward academicians, students, researchers, and engineers seeking relevant and current research on the progressive research based on the implementation of swarm intelligence in self-organized systems.