Download Free Forests At The Land Atmosphere Interface Book in PDF and EPUB Free Download. You can read online Forests At The Land Atmosphere Interface and write the review.

Annotation. Forest ecosystems exist at the interface between the land and the atmosphere. Understanding the properties of this planetary boundary layer is very important for a number of related disciplines. This book presents an overview of topics that are of significance at this interface, starting at the scale of intra-leaf organelles, ranging to higher levels of organisation such as communities and ecosystems. It covers topics such as stomatal functioning, large scale processes, radiation modelling, forest meteorology and carbon sequestration. Based on proceedings of a conference to mark the retirement of Professor Paul Jarvis from the University of Edinburgh, the book contains contributions from leading international scientists. It will be of significant interest to researchers in forestry, ecology, environmental sciences and natural resources.
Forests, Water and People in the Humid Tropics is a comprehensive review of the hydrological and physiological functioning of tropical rain forests, the environmental impacts of their disturbance and conversion to other land uses, and optimum strategies for managing them. The book brings together leading specialists in such diverse fields as tropical anthropology and human geography, environmental economics, climatology and meteorology, hydrology, geomorphology, plant and aquatic ecology, forestry and conservation agronomy. The editors have supplemented the individual contributions with invaluable overviews of the main sections and provide key pointers for future research. Specialists will find authenticated detail in chapters written by experts on a whole range of people-water-land use issues, managers and practitioners will learn more about the implications of ongoing and planned forest conversion, while scientists and students will appreciate a unique review of the literature.
The Carbon Balance of Forest Biomes provides an informed synthesis on the current status of forests and their future potential for carbon sequestration. This volume is timely, since convincing models which scale from local to regional carbon fluxes are needed to support these international agreements, whilst criticisms have been levelled at existing empirical approaches. One key question is to determine how well eddy-flux measurements at the stand-level represent regional-scale processes. This may be related to specific management practices (age, plantation, fertilisation) or simple bias in choosing representative sites (ease of access, roughness, proximity to physical barriers). The ecology and regeneration state of temperate, tropical and boreal forests under current climatic conditions are discussed, together with partitioning of photosynthetic and respiratory fluxes from soils and vegetation. The volume considers how to integrate contrasting methodologies, and the latest approaches for scaling from stand to the planetary boundary layer.
Process-based models open the way to useful predictions of the future growth rate of forests and provide a means of assessing the probable effects of variations in climate and management on forest productivity. As such they have the potential to overcome the limitations of conventional forest growth and yield models, which are based on mensuration data and assume that climate and atmospheric CO2 concentrations will be the same in the future as they are now. This book discusses the basic physiological processes that determine the growth of plants, the way they are affected by environmental factors and how we can improve processes that are well-understood such as growth from leaf to stand level and productivity. A theme that runs through the book is integration to show a clear relationship between photosynthesis, respiration, plant nutrient requirements, transpiration, water relations and other factors affecting plant growth that are often looked at separately. This integrated approach will provide the most comprehensive source for process-based modelling, which is valuable to ecologists, plant physiologists, forest planners and environmental scientists. - Includes explanations of inherently mathematical models, aided by the use of graphs and diagrams illustrating causal interactions and by examples implemented as Excel spreadsheets - Uses a process-based model as a framework for explaining the mechanisms underlying plant growth - Integrated approach provides a clear and relatively simple treatment
Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.
Hydrology is vital to human civilisations as well as to natural ecosystems, yet it has only emerged as a distinct scientific discipline during the last 50 years or so. This book reviews the development of modern hydrology primarily through the experiences of the multidisciplinary team of scientists and engineers at Wallingford, near Oxford, who have been at the forefront of many of the developments in UK hydrological research. These topics include: • The development of basic understanding through the collection of data with specialised instrumentation in experimental basins • The study of extreme flows – both floods and droughts • The role moisture in the soil • Studies of the processes controlling evaporation • Water resource studies • Modelling and prediction of the extremes of flow improved • Understanding of water quality issues • A widening recognition of the importance of an ecosystem approach • Meeting the challenges of climate change, • Data handling • Future developments in hydrology and the pressures which generate them. Readership: hydrologists in both academia and a wide range of applied fields such as civil engineering, meteorology, geography and physics, as well as advanced students in earth science, environmental science and physical geography programmes worldwide.
Climbing plants, including lianas, represent a fascinating component of the ecology of tropical forests. This book focuses on the climbing plants of West African forests. Based on original research, it presents information on the flora (including a checklist), diversity (with overviews at several levels of integration), ecology (distribution, characteristics in relation to environment, their role in forest ecosystems) and ethnobotany. Forestry aspects, such as their impact on tree growth and development, and the effects of forestry interventions on climbers are also covered.
The book is designed to be a textbook for university students (MSc-PhD level) and a reference for researchers and practitioners. It is an introduction to dynamic modelling of forest growth based on ecological theory but aiming for practical applications for forest management under environmental change. It is largely based on the work and research findings of the authors, but it also covers a wide range of literature relevant to process-based forest modelling in general. The models presented in the book also serve as tools for research and can be elaborated further as new research findings emerge. The material in the book is arranged such that the student starts from basic concepts and formulations, then moves towards more advanced theories and methods, finally learning about parameter estimation, model testing, and practical application. Exercises with solutions and hands-on R-code are provided to help the student digest the concepts and become proficient with the methods. The book should be useful for both forest ecologists who want to become modellers, and for applied mathematicians who want to learn about forest ecology. The basic concepts and theory are formulated in the first four chapters, including a review of traditional descriptive forest models, basic concepts of carbon balance modelling applied to trees, and theories and models of tree and forest structure. Chapter 5 provides a synthesis in the form of a core model which is further elaborated and applied in the subsequent chapters. The more advanced theories and methods in Chapters 6 and 7 comprise aspects of competition through tree interactions, and eco-evolutionary modelling, including optimisation and game theory, a topical and fast developing area of ecological modelling under climate change. Chapters 8 and 9 are devoted to parameter estimation and model calibration, showing how empirical and process-based methods and related data sources can be bridged to provide reliable predictions. Chapter 10 demonstrates some practical applications and possible future development paths of the approach. The approach in this book is unique in that the models presented are based on ecological theory and research findings, yet sufficiently simple in structure to lend themselves readily to practical application, such as regional estimates of harvest potential, or satellite-based monitoring of growth. The applicability is also related to the objective of bridging empirical and process-based approaches through data assimilation methods that combine research-based ecological measurements with standard forestry data. Importantly, the ecological basis means that it is possible to build on the existing models to advance the approach as new research findings become available.
Environmental Fluid Mechanics (EFM) studies the motion of air and water at several different scales, the fate and transport of species carried along by these fluids, and the interactions among those flows and geological, biological, and engineered systems. EFM emerged some decades ago as a response to the need for tools to study problems of flow an
This book introduces an innovative approach to sustainable and regenerative mountain development. Transdisciplinary to biophysical and biocultural scales, it provides answers to the "what, when, how, why, and where" that researchers question on mountains, including the most challenging: So What! Forwarding thinking in its treatment of core subjects, this decolonial, non-hegemonic volume inaugurates the Series with contributions of seasoned montologists, and invites the reader to an engaging excursion to ascend the rugged topography of paradigms, with the scaffolding hike of ambitious curiosity typical of mountain explorers. Chapter 8 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.