Download Free Forest Products And Bioenergy Book in PDF and EPUB Free Download. You can read online Forest Products And Bioenergy and write the review.

Bioenergy from Sustainable Forestry synthesizes information needed to design or implement sustainable forest management systems for production of biomass for energy in conjunction with other forest products. It is organized around the criteria for sustainable forest management: productivity, environment, social issues, economics, and legal and institutional framework. More than 25 international experts from 10 countries have brought together available ecological, physical, operational, social and economic information and identified gaps in knowledge related to biomass production and harvesting systems. This is the first time that such comprehensive information has been brought together under one cover, using an integrated, holistic approach. Guiding principles and state of the art knowledge are emphasized. The book will enable forest resource managers and planners to evaluate the ability of specific forest regions to sustainably meet bioenergy production demands.
This book is written for scientists and practitioners interested in deepening their knowledge of the sustainable production of bioenergy from wood in tropical and sub-tropical countries. Utilising the value chain concept, this book outlines the necessary aspects for managing sustainable bioenergy production. A wide range of topics is covered including biomass localization, modelling and upscaling, production management in woodlands and plantations, and transport and logistics. Biomass quality and conversion pathways are examined in order to match the conversion technology with the available biomass. A section is dedicated to issues surrounding sustainability. The issues, covered in a life-cycle assessment of the bioenergy system, include socio-economic challenges, local effects on water, biodiversity, nutrient-sustainability and global impacts. Through this holistic approach and supporting examples from tropical and sub-tropical countries, the reader is guided in designing and implementing a value chain as the main management instrument for sustainable wood.
What is forest-based biomass energy and why should we care? Written by environmental expert Frank Spellman, Forest-Based Biomass Energy: Concepts and Applications details how forest biomass can be converted to energy and energy products, including direct combustion, pellets, gasification, and co-firing. It explores the possibilities of forest-based
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.
Global warming continues to gain importance on the international agenda and calls for action are heightening. Yet, there is still controversy over what must be done and what is needed to proceed. Policy Implications of Greenhouse Warming describes the information necessary to make decisions about global warming resulting from atmospheric releases of radiatively active trace gases. The conclusions and recommendations include some unexpected results. The distinguished authoring committee provides specific advice for U.S. policy and addresses the need for an international response to potential greenhouse warming. It offers a realistic view of gaps in the scientific understanding of greenhouse warming and how much effort and expense might be required to produce definitive answers. The book presents methods for assessing options to reduce emissions of greenhouse gases into the atmosphere, offset emissions, and assist humans and unmanaged systems of plants and animals to adjust to the consequences of global warming.
The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.
Bioenergy with Carbon Capture and Storage: Using Natural Resources for Sustainable Development presents the technologies associated with bioenergy and CCS and its applicability as an emissions reduction tool. The book explores existing climate policies and current carbon capture and storage technologies. Sections offer an overview of several routes to use biomass and produce bioenergy through processes with low or even negative CO2 emissions. Associated technology and the results of recent research studies to improve the sustainability of the processes are described, pointing out future trends and needs. This book can be used by bioenergy engineering researchers in industry and academia and by professionals and researchers in carbon capture and storage.
This book discusses renewable energy resources and systems as well as energy efficiency. It contains twenty-three chapters over six sections that address a multitude of renewable energy types, including solar and photovoltaic, biomass, hydroelectric, and geothermal. The information presented herein is a scientific contribution to energy and environmental regulations, quality and efficiency of energy services, energy supply security, energy market-based approaches, government interventions, and the spread of technological innovation.
This publication highlights the use of wood for energy and includes the most recent statistics on wood energy markets across the UNECE region. It aims to communicate the relevance of wood energy in the region and help bridge information about the forest and energy sectors. It also intends to offer some of the best-available information on the role that wood energy can play in various sectors to support environmental, energy, and socio-economic strategies toward a greener economy. It focuses on commercial wood energy uses in the UNECE including energy generated for cooking, heating and electricity generation.
In this report, the authors systematically analyze the biomass carbon (C) conversion of harvested wood products (HWPs) produced from forests in Ontario and, more broadly, in Canada. The major categories of HWPs referred to are lumber, structural panel, non-structural panel, market pulp, newsprint, fine paper, and "other" paper products. The analysis tracks C flow for each product type from forest to harvested biomass, re-allocation of biomass C among HWPs, use of wood residue to produce energy, exports of HWPs from Ontario and Canada, and distribution of HWPs among major end uses. As well, service lives of HWPs, end-of-life disposal, and landfill HWP C stock and landfill methane (CH4) emissions for HWPs produced and used in Ontario/Canada and in countries that import HWPs from Ontario/Canada are assessed.--Document.