Download Free Forest Management Alters Forest Water Use And Drought Vulnerability Book in PDF and EPUB Free Download. You can read online Forest Management Alters Forest Water Use And Drought Vulnerability and write the review.

This work advises owners and managers how woodlands and forests influence the freshwater ecosystem, and gives guidance on how operations should be carried out in order to protect and enhance the water environment. The guidelines apply equally to forest enterprises and the private sector.
Many people worldwide lack adequate access to clean water to meet basic needs, and many important economic activities, such as energy production and agriculture, also require water. Climate change is likely to aggravate water stress. As temperatures rise, ecosystems and the human, plant, and animal communities that depend on them will need more water to maintain their health and to thrive. Forests and trees are integral to the global water cycle and therefore vital for water security – they regulate water quantity, quality, and timing and provide protective functions against (for example) soil and coastal erosion, flooding, and avalanches. Forested watersheds provide 75 percent of our freshwater, delivering water to over half the world’s population. The purpose of A Guide to Forest–Water Management is to improve the global information base on the protective functions of forests for soil and water. It reviews emerging techniques and methodologies, provides guidance and recommendations on how to manage forests for their water ecosystem services, and offers insights into the business and economic cases for managing forests for water ecosystem services. Intact native forests and well-managed planted forests can be a relatively cheap approach to water management while generating multiple co-benefits. Water security is a significant global challenge, but this paper argues that water-centered forests can provide nature-based solutions to ensuring global water resilience.
The protective function of forests for water quality and water-related hazards, as well as adequate water supplies for forest ecosystems in Europe, are potentially at risk due to changing climate and changing land-management practices. Water budgets of forest ecosystems are heavily dependent on climate and forest structure. The latter is determined by the management measures applied in the forestry sector. Various developments of forest management strategies, imposed on a background of changing climate, are considered in assessing the overall future of forest–water interactions in Europe. Synthesizing recent research on the interactions of forest management and the water regime of forests in Europe and beyond, the book makes an important contribution to the ongoing dialogue between scientists dealing with different scales of forest-water interactions. This collaborative endeavour, which covers geographic and climatic gradients from Iceland to Israel and from southern Spain to Estonia and Finland, was made possible through the COST Action "Forest Management and the Water Cycle (FORMAN)", which was launched in 2007 (http://www.forestandwater.eu/). The book will be of particular interest to the research community involved in forest ecosystem research and forest hydrology, as well as landscape ecologists and hydrologists in general. It will also provide reference material for forest practitioners and planners in hydrology and land use.
Negative impacts of climate change on forests threaten the delivery of crucial wood and non-wood goods and environmental services on which an estimated 1.6 billion people fully or partly depend. Assessment of the vulnerability of forests and forest-dependent people to climate change is a necessary first step for identifying the risks and the most vulnerable areas and people, and for developing measures for adaptation and targeting them for specific contexts. This publication provides practical technical guidance for forest vulnerability assessment in the context of climate change. It describes the elements that should be considered for different time horizons and outlines a structured approach for conducting these assessments. The framework will guide practitioners in conducting a step-by-step analysis and will facilitate the choice and use of appropriate tools and methods. Background information is provided separately in text boxes, to assist readers with differing amounts of experience in forestry, climate change and assessment practices. The publication will provide useful support to any vulnerability assessment with a forest- and tree-related component.
This assessment provides input to the reauthorized National Integrated Drought Information System (NIDIS) and the National Climate Assessment (NCA), and it establishes the scientific foundation needed to manage for drought resilience and adaptation. Focal areas include drought characterization; drought impacts on forest processes and disturbances such as insect outbreaks and wildfire; and consequences for forest and rangeland values. Drought can be a severe natural disaster with substantial social and economic consequences. Drought becomes most obvious when large-scale changes are observed; however, even moderate drought can have long-lasting impacts on the structure and function of forests and rangelands without these obvious large-scale changes. Large, stand-level impacts of drought are already underway in the West, but all U.S. forests are vulnerable to drought. Drought-associated forest disturbances are expected to increase with climatic change. Management actions can either mitigate or exacerbate the effects of drought. A first principal for increasing resilience and adaptation is to avoid management actions that exacerbate the effects of current or future drought. Options to mitigate drought include altering structural or functional components of vegetation, minimizing drought-mediated disturbance such as wildfire or insect outbreaks, and managing for reliable flow of water.
The United Nations has declared 2018-2028 as the International Decade for Action on Water for Sustainable Development. This is a timely designation. In an increasingly thirsty world, the subject of forest-water interactions is of critical importance to the achievement of sustainability goals. The central underlying tenet of this book is that the hydrologic community can conduct better science and make a more meaningful impact to the world’s water crisis if scientists are: (1) better equipped to utilize new methods and harness big data from either or both high-frequency sensors and long-term research watersheds; and (2) aware of new developments in our process-based understanding of the hydrological cycle in both natural and urban settings. Accordingly, this forward-looking book delves into forest-water interactions from multiple methodological, statistical, and process-based perspectives (with some chapters featuring data sets and open-source R code), concluding with a chapter on future forest hydrology under global change. Thus, this book describes the opportunities of convergence in high-frequency sensing, big data, and open source software to catalyze more comprehensive understanding of forest-water interactions. The book will be of interest to researchers, graduate students, and advanced undergraduates in an array of disciplines, including hydrology, forestry, ecology, botany, and environmental engineering.
This book is a printed edition of the Special Issue "Forest Management and Water Resources in the Anthropocene" that was published in Forests
Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex interactions make traditional experimental approaches difficult. Yet, the current progression of climate change science offers new insights from recent syntheses, models, and experiments, providing enough information to start planning now for a future that will likely include an increase in disturbances and rapid changes in forest conditions. Climate Change Adaptation and Mitigation Management Options: A Guide for Natural Resource Managers in Southern Forest Ecosystems provides a comprehensive analysis of forest management options to guide natural resource management in the face of future climate change. Topics include potential climate change impacts on wildfire, insects, diseases, and invasives, and how these in turn might affect the values of southern forests that include timber, fiber, and carbon; water quality and quantity; species and habitats; and recreation. The book also considers southern forest carbon sequestration, vulnerability to biological threats, and migration of native tree populations due to climate change. This book utilizes the most relevant science and brings together science experts and land managers from various disciplines and regions throughout the south to combine science, models, and on-the-ground experience to develop management options. Providing a link between current management actions and future management options that would anticipate a changing climate, the authors hope to ensure a broader range of options for managing southern forests and protecting their values in the future.
A global assessment of potential and anticipated impacts of efforts to achieve the SDGs on forests and related socio-economic systems. This title is available as Open Access via Cambridge Core.