Download Free Forensic Dna Typing Principles Applications And Advancements Book in PDF and EPUB Free Download. You can read online Forensic Dna Typing Principles Applications And Advancements and write the review.

The book explores the fundamental principles, advances in forensic techniques, and its application on forensic DNA analysis. The book is divided into three modules; the first module provides the historical prospect of forensic DNA typing and introduces fundamentals of forensic DNA typing, methodology, and technical advancements, application of STRs, and DNA databases for forensic DNA profile analysis. Module 2 examines the problems and challenges encountered in extracting DNA and generating DNA profiles. It provides information on the methods and the best practices for DNA isolation from forensic biological samples and human remains like ancient DNA, DNA typing of skeletal remains and disaster victim identification, the importance of DNA typing in human trafficking, and various problems associated with capillary electrophoresis. Module 3 emphasizes various technologies that are based on SNPs, STRs namely Y-STR, X-STR, mitochondrial DNA profiling in forensic science. Module 4 explores the application of non-human forensic DNA typing of domestic animals, wildlife forensics, plant DNA fingerprinting, and microbial forensics. The last module discusses new areas and alternative methods in forensic DNA typing, including Next-Generation Sequencing, and its utility in forensic science, oral microbes, and forensic DNA phenotyping. Given its scope, the book is a useful resource in the field of DNA fingerprinting for scientists, forensic experts, and students at the postgraduate level.
Matching DNA samples from crime scenes and suspects is rapidly becoming a key source of evidence for use in our justice system. DNA Technology in Forensic Science offers recommendations for resolving crucial questions that are emerging as DNA typing becomes more widespread. The volume addresses key issues: Quality and reliability in DNA typing, including the introduction of new technologies, problems of standardization, and approaches to certification. DNA typing in the courtroom, including issues of population genetics, levels of understanding among judges and juries, and admissibility. Societal issues, such as privacy of DNA data, storage of samples and data, and the rights of defendants to quality testing technology. Combining this original volume with the new update-The Evaluation of Forensic DNA Evidence-provides the complete, up-to-date picture of this highly important and visible topic. This volume offers important guidance to anyone working with this emerging law enforcement tool: policymakers, specialists in criminal law, forensic scientists, geneticists, researchers, faculty, and students.
Fundamentals of Forensic DNA Typing is written with a broad viewpoint. It examines the methods of current forensic DNA typing, focusing on short tandem repeats (STRs). It encompasses current forensic DNA analysis methods, as well as biology, technology and genetic interpretation. This book reviews the methods of forensic DNA testing used in the first two decades since early 1980's, and it offers perspectives on future trends in this field, including new genetic markers and new technologies. Furthermore, it explains the process of DNA testing from collection of samples through DNA extraction, DNA quantitation, DNA amplification, and statistical interpretation. The book also discusses DNA databases, which play an important role in law enforcement investigations. In addition, there is a discussion about ethical concerns in retaining DNA profiles and the issues involved when people use a database to search for close relatives. Students of forensic DNA analysis, forensic scientists, and members of the law enforcement and legal professions who want to know more about STR typing will find this book invaluable. - Includes a glossary with over 400 terms for quick reference of unfamiliar terms as well as an acronym guide to decipher the DNA dialect - Continues in the style of Forensic DNA Typing, 2e, with high-profile cases addressed in D.N.A.Boxes-- "Data, Notes & Applications" sections throughout - Ancillaries include: instructor manual Web site, with tailored set of 1000+ PowerPoint slides (including figures), links to online training websites and a test bank with key
Advanced Topics in Forensic DNA Typing: Interpretation builds upon the previous two editions of John Butler's internationally acclaimed Forensic DNA Typing textbook with forensic DNA analysts as its primary audience. Intended as a third-edition companion to the Fundamentals of Forensic DNA Typing volume published in 2010 and Advanced Topics in Forensic DNA Typing: Methodology published in 2012, this book contains 16 chapters with 4 appendices providing up-to-date coverage of essential topics in this important field. Over 80 % of the content of this book is new compared to previous editions. - Provides forensic DNA analysts coverage of the crucial topic of DNA mixture interpretation and statistical analysis of DNA evidence - Worked mixture examples illustrate the impact of different statistical approaches for reporting results - Includes allele frequencies for 24 commonly used autosomal STR loci, the revised Quality Assurance Standards which went into effect September 2011
In 1992 the National Research Council issued DNA Technology in Forensic Science, a book that documented the state of the art in this emerging field. Recently, this volume was brought to worldwide attention in the murder trial of celebrity O. J. Simpson. The Evaluation of Forensic DNA Evidence reports on developments in population genetics and statistics since the original volume was published. The committee comments on statements in the original book that proved controversial or that have been misapplied in the courts. This volume offers recommendations for handling DNA samples, performing calculations, and other aspects of using DNA as a forensic toolâ€"modifying some recommendations presented in the 1992 volume. The update addresses two major areas: Determination of DNA profiles. The committee considers how laboratory errors (particularly false matches) can arise, how errors might be reduced, and how to take into account the fact that the error rate can never be reduced to zero. Interpretation of a finding that the DNA profile of a suspect or victim matches the evidence DNA. The committee addresses controversies in population genetics, exploring the problems that arise from the mixture of groups and subgroups in the American population and how this substructure can be accounted for in calculating frequencies. This volume examines statistical issues in interpreting frequencies as probabilities, including adjustments when a suspect is found through a database search. The committee includes a detailed discussion of what its recommendations would mean in the courtroom, with numerous case citations. By resolving several remaining issues in the evaluation of this increasingly important area of forensic evidence, this technical update will be important to forensic scientists and population geneticistsâ€"and helpful to attorneys, judges, and others who need to understand DNA and the law. Anyone working in laboratories and in the courts or anyone studying this issue should own this book.
The book presents hands-on protocols for conventional and advanced forensic DNA fingerprinting experiments. It includes manual, semi-automatic, and advanced automatic techniques for DNA extraction from different biological samples. It also discusses various qualitative and quantitative approaches for the assessment of extracted forensic DNA. It contains protocols for the amplification of short tandem repeat markers (STRs) for the amplification-based target enrichment of the forensic samples. Further, it examines genotyping of the STR loci through capillary electrophoresis and includes real-world case studies where forensic DNA analysis has been used in the criminal and civil disputes. The book concludes by presenting technological developments in the field of DNA forensic analysis. Suitable for beginners, it is a key reference resource on a wide variety of DNA profiling techniques and applications.
Forensic DNA Typing, Second Edition, is the only book available that specifically covers detailed information on mitochondrial DNA and the Y chromosome. It examines the science of current forensic DNA typing methods by focusing on the biology, technology, and genetic interpretation of short tandem repeat (STR) markers, which encompass the most common forensic DNA analysis methods used today. The book covers topics from introductory level right up to cutting edge research. High-profile cases are addressed throughout the text, near the sections dealing with the science or issues behind these cases. Ten new chapters have been added to accommodate the explosion of new information since the turn of the century. These additional chapters cover statistical genetic analysis of DNA data, an emerging field of interest to DNA research. Several chapters on statistical analysis of short tandem repeat (STR) typing data have been contributed by Dr. George Carmody, a well-respected professor in forensic genetics. Specific examples make the concepts of population genetics more understandable. This book will be of interest to researchers and practitioners in forensic DNA analysis, forensic scientists, population geneticists, military and private and public forensic laboratories (for identifying individuals through remains), and students of forensic science. *The only book available that specifically covers detailed information on mitochondrial DNA and the Y chromosome*Chapters cover the topic from introductory level right up to "cutting edge" research*High-profile cases are addressed throughout the book, near the sections dealing with the science or issues behind these cases*NEW TO THIS EDITION: D.N.A. Boxes--boxed "Data, Notes & Applications" sections throughout the book offer higher levels of detail on specific questions
Although DNA fingerprinting is a very young branch of molecular genetics, being barely six years old, its recent impact on science, law and politics has been dramatic. The application of DNA finger printing to forensic and legal medicine has guaranteed a high public profile for this technology, and indeed, scarcely a week goes by with out the press reporting yet another crime successfully solved by molec ular genetics. Less spectacularly, but equally importantly, DNA typing methods are steadily diffusing into an ever wider set of applications and research fields, ranging from medicine through to conservation biology. To date, two DNA fingerprinting workshops have been held in the UK, one in 1988 organised by Terry Burke at the University of Leicester, and the second in 1989 at the University of Nottingham, co-ordinated by David Parkin. In parallel with these workshops, which have provided an important focus for researchers, Bill Amos and Josephine Pemberton in Cambridge have established an informal newsletter "Fingerprint News" which is playing a major role as a forum for DNA fingerprinters. By 1989, it was clear that the field had broadened sufficiently to warrant a full international meeting. As a result, Gaudenz Dolf took on the task of organising the first, of what I hope will be many, International Symposium of DNA Fingerprinting held at Bern during Ist-3rd October 1990. The success of the meeting can be judged from the remarkable attendance, with 270 delegates from no less than 30 countries.
This reference book comprehensively reviews the significance of DNA technology in forensic science. After presenting the theory, basic principles, tools and techniques that are used in forensic DNA typing, it summarizes various techniques, including autosomal STR, Y-STR, X-STR, mitochondrial DNA and NGS, used in solving both criminal as and civil cases, such as paternity disputes, identification of mutilated remains, and culprit identification in sexual assault and murder cases. It also provides an overview of DNA-based genetic diagnostics for various diseases, and discusses the role of DNA typing in drug reactions, as well as the application of non-human DNA profiling of animals and plants in forensic science investigations. Lastly, the book examines the role of internal quality control in maintaining the high quality of DNA profiling.
An Introduction to Forensic Genetics is a comprehensive introduction to this fast moving area from the collection of evidence at the scene of a crime to the presentation of that evidence in a legal context. The last few years have seen significant advances in the subject and the development and application of genetics has revolutionised forensic science. This book begins with the key concepts needed to fully appreciate the subject and moves on to examine the latest developments in the field, illustrated throughout with references to relevant casework. In addition to the technology involved in generating a DNA profile, the underlying population biology and statistical interpretation are also covered. The evaluation and presentation of DNA evidence in court is discussed as well with guidance on the evaluation process and how court reports and statements should be presented. An accessible introduction to Forensic Genetics from the collection of evidence to the presentation of that evidence in a legal context Includes case studies to enhance student understanding Includes the latest developments in the field focusing on the technology used today and that which is likely to be used in the future Accessible treatment of population biology and statistics associated with forensic evidence This book offers undergraduate students of Forensic Science an accessible approach to the subject that will have direct relevance to their courses. An Introduction to Forensic Genetics is also an invaluable resource for postgraduates and practising forensic scientists looking for a good introduction to the field.