Download Free Forcefields For Atomistic Scale Simulations Materials And Applications Book in PDF and EPUB Free Download. You can read online Forcefields For Atomistic Scale Simulations Materials And Applications and write the review.

This book describes the forcefields/interatomic potentials that are used in the atomistic-scale and molecular dynamics simulations. It covers mechanisms, salient features, formulations, important aspects and case studies of various forcefields utilized for characterizing various materials (such as nuclear materials and nanomaterials) and applications. This book gives many help to students and researchers who are studying the forcefield potentials and introduces various applications of atomistic-scale simulations to professors who are researching molecular dynamics.
This book comprehensively reviews assorted types of coatings, their applications, and various strategies employed by several scientists and researchers to fabricate them. Exclusively, the recent progress in computational strategies that are helpful to optimize the best suitable coating formulation before one goes for the real-time fabrication has been discussed in detail. And this book is also intended to shed light on the computational modeling techniques that are used in the characterization of various coating materials. It covers mechanisms, salient features, formulations, important aspects, and case studies of coatings utilized for various applications. The latest research in this area as well as possible avenues of future research is also highlighted to encourage the researchers.
Dynamic Mechanical and Creep-Recovery Behaviour of Polymer-Based Composites: Mechanical and Mathematical Modeling covers mathematical modelling, dynamic mechanical analysis, and the ways in which various factors impact the creep-recovery behaviour of polymer composites. The effects of polymer molecular weight, plasticizers, cross-linking agents, and chemical treatment of filler material are addressed and information on thermoplastic and thermosetting polymer-based composites is also covered, including their various applications and the advantages and disadvantages of their use in different settings. The final 2 chapters of the book cover mathematical modeling of creep-recovery behavior for polymer composites and software-based simulation of creep-recovery in polymer composites, respectively. Dynamic Mechanical and Creep-Recovery Behaviour of Polymer-Based Composites: Mechanical and Mathematical Modeling covers mathematical modelling, dynamic mechanical analysis, and the ways in which various factors impact the creep-recovery behaviour of polymer composites. The effects of polymer molecular weight, plasticizers, cross-linking agents, and chemical treatment of filler material are addressed and information on thermoplastic and thermosetting polymer-based composites is also covered, including their various applications and the advantages and disadvantages of their use in different settings. The final 2 chapters of the book cover mathematical modeling of creep-recovery behavior for polymer composites and software-based simulation of creep-recovery in polymer composites, respectively. - Analyzes the dynamic mechanical and creep-recovery behaviors of thermoplastic and thermosetting polymer composites in a variety of applications - Features diverse mechanical/mathematical models utilized to fit data collected from creep-recovery studies - Covers various factors that influence dynamic mechanical properties - Discusses the advantages and disadvantages of using these materials in different settings
This proceedings book contains papers presented at the International Symposium on Lightweight and Sustainable Polymeric Materials (LSPM23) held on February 17, 2023, and organized by King Mongkut’s University of Technology North Bangkok, Thailand. The papers in this book are presented by academics and industrial practitioners showcasing the latest technological advancements and applications of environmentally friendly polymeric materials with the emphasis on the production of lightweight, low-cost, low-energy-consuming materials with competitive performance. The content of this book appeals to academia and industrial researchers from the fields of polymer chemistry, physics, and materials science.
This book focuses on the combustion performance and application of innovative energetic materials for solid and hybrid space rocket propulsion. It provides a comprehensive overview of advanced technologies in the field of innovative energetic materials and combustion performance, introduces methods of modeling and diagnosing the aggregation/agglomeration of active energetic metal materials in solid propellants, and investigates the potential applications of innovative energetic materials in solid and hybrid propulsion. In addition, it also provides step-by-step solutions for sample problems to help readers gain a good understanding of combustion performance and potential applications of innovative energetic materials in space propulsion. This book serves as an excellent resource for researchers and engineers in the field of propellants, explosives, and pyrotechnics.