Download Free Food Technology Disruptions Book in PDF and EPUB Free Download. You can read online Food Technology Disruptions and write the review.

Food Technology Disruptions covers the latest disruptions in the food industry, such as the Internet of Things, digital technologies, modern applications like 3D printing, bacterial sensors in food packaging, electronic noses for food authentication, and artificial intelligence. With additional discussions on innovative distribution and delivery of food and consumer acceptance of food disruptions, this book is an essential resource for food scientists, technologists, engineers, agriculturalists, chemists, product developers, researchers, academics and professionals working in the food industry. While innovations play an important role in food production, disruptive technologies are a revolutionary type of innovation that can displace an established technology and shake up the industry...or create a completely new industry. Currently, digital technologies and smart applications lead innovations in the food sector in order to optimize the food supply chain and to develop and deliver tailor-made food products to consumers with new eating habits. - Covers digital technologies in agriculture, food production and food processing, modern eating habits, personalized nutrition, and relevant innovative food products - Brings alternative protein sources, novel functional foods and artificial meat - Discusses the Internet of Things, digital technologies and modern applications like 3D printing, smart packaging and smart food distribution
Given the central role of the food and agriculture system in driving so many of the connected ecological, social and economic threats and challenges we currently face, Rethinking Food and Agriculture reviews, reassesses and reimagines the current food and agriculture system and the narrow paradigm in which it operates. Rethinking Food and Agriculture explores and uncovers some of the key historical, ethical, economic, social, cultural, political, and structural drivers and root causes of unsustainability, degradation of the agricultural environment, destruction of nature, short-comings in science and knowledge systems, inequality, hunger and food insecurity, and disharmony. It reviews efforts towards 'sustainable development', and reassesses whether these efforts have been implemented with adequate responsibility, acceptable societal and environmental costs and optimal engagement to secure sustainability, equity and justice. The book highlights the many ways that farmers and their communities, civil society groups, social movements, development experts, scientists and others have been raising awareness of these issues, implementing solutions and forging 'new ways forward', for example towards paradigms of agriculture, natural resource management and human nutrition which are more sustainable and just. Rethinking Food and Agriculture proposes ways to move beyond the current limited view of agro-ecological sustainability towards overall sustainability of the food and agriculture system based on the principle of 'inclusive responsibility'. Inclusive responsibility encourages ecosystem sustainability based on agro-ecological and planetary limits to sustainable resource use for production and livelihoods. Inclusive responsibility also places importance on quality of life, pluralism, equity and justice for all and emphasises the health, well-being, sovereignty, dignity and rights of producers, consumers and other stakeholders, as well as of nonhuman animals and the natural world. - Explores some of the key drivers and root causes of unsustainability , degradation of the agricultural environment and destruction of nature - Highlights the many ways that different stakeholders have been forging 'new ways forward' towards alternative paradigms of agriculture, human nutrition and political economy, which are more sustainable and just - Proposes ways to move beyong the current unsustainable exploitation of natural resources towards agroecological sustainability and overall sustainability of the food and agriculture system based on 'inclusive responsibility'
Disruptive Technologies outlines the steps businesses can take to engage with emerging technologies today in order to serve the consumer of tomorrow. This book offers the knowledge and tools to engage confidently with emerging technologies for better business. This highly practical book offers organizations a distinct response to emerging technologies including Blockchain (Bitcoin), artificial intelligence, graphene and nanotechnology (among others) and other external factors (such as the sharing economy, mobile penetration, millennial workforce, ageing populations) that impact on their business, client service and product model. Disruptive Technologies provides a clear roadmap to assess, respond to and problem-solve: what are the upcoming changes in technology, roughly when to respond, and what's the best response? By using a quick-to-master evaluation and decision-making framework - structured around the key dimensions of Technology, Behaviour and Data (TBD). Emerging technologies guru Paul Armstrong offers a clear guide to the key disruptive technologies and a toolbox of frameworks, checklists, and activities to evaluate their possibilities. Disruptive Technologies enables forecasting of potential scenarios, implementation of plans, alternative strategies and the ability to handle change more effectively within an organization. The essential tool for all professionals who need to get to grips with emerging technologies fast and strategically.
THE DIGITAL AGRICULTURAL REVOLUTION The book integrates computational intelligence, applied artificial intelligence, and modern agricultural practices and will appeal to scientists, agriculturists, and those in plant and crop science management. There is a need for synergy between the application of modern scientific innovation in the area of artificial intelligence and agriculture, considering the major challenges from climate change consequences viz. rising temperatures, erratic rainfall patterns, the emergence of new crop pests, drought, flood, etc. This volume reports on high-quality research (theory and practice including prototype & conceptualization of ideas, frameworks, real-world applications, policy, standards, psychological concerns, case studies, and critical surveys) on recent advances toward the realization of the digital agriculture revolution as a result of the convergence of different disruptive technologies. The book touches upon the following topics which have contributed to revolutionizing agricultural practices. Applications of Artificial Intelligence in Agriculture (AI models and architectures, system design, real-world applications of AI, machine learning and deep learning in the agriculture domain, integration & coordination of systems and issues & challenges). IoT and Big Data Analytics Applications in Agriculture (theory & architecture and the use of various types of sensors in optimizing agriculture resources and final product, benefits in real-time for crop acreage estimation, monitoring & control of agricultural produce). Robotics & Automation in Agriculture Systems (Automation challenges, need and recent developments and real case studies). Intelligent and Innovative Smart Agriculture Applications (use of hybrid intelligence in better crop health and management). Privacy, Security, and Trust in Digital Agriculture (government framework & policy papers). Open Problems, Challenges, and Future Trends. Audience Researchers in computer science, artificial intelligence, electronics engineering, agriculture automation, crop management, and science.
New technologies such as artificial intelligence, blockchain, the Internet of Things (IoT), etc. are redefining business processes around the world at a rapid rate and resulting in both great opportunities and challenges for businesses. Though these technologies are extensively being used in developed countries, emerging economies are also not far behind. Disruptive Technologies in International Business advances the understanding of technological applications in business within an international paradigm. With its in-depth discussions of diverse topics such as the global value chain (GVC), environmental risk management, IoT, Surface Mobility, and anime, the book argues that technologies offer many advantages but there are accompanying risks, challenges, and disadvantages as well. The need of the hour is to address the impact of these technologies on the environment, society, and economy of the world. This book offers a collage of insights on how these technologies can potentially change the playing field in businesses and countries and contribute to the betterment of society. This book will provide business practitioners, international organizations, government officials, and policy makers with inspiration and new leads toward more efficient systems, policies, and operational frameworks in our increasingly technology-driven society.
Future Foods: Global Trends, Opportunities, and Sustainability Challenges highlights trends and sustainability challenges along the entire agri-food supply chain. Using an interdisciplinary approach, this book addresses innovations, technological developments, state-of-the-art based research, value chain analysis, and a summary of future sustainability challenges. The book is written for food scientists, researchers, engineers, producers, and policy makers and will be a welcomed reference. - Provides practical solutions for overcoming recurring sustainability challenges along the entire agri-food supply chain - Highlights potential industrial opportunities and supports circular economy concepts - Proposes novel concepts to address various sustainability challenges that can affect and have an impact on the future generations
The industrial age of energy and transportation will be over by 2030. Maybe before. Exponentially improving technologies such as solar, electric vehicles, and autonomous (self-driving) cars will disrupt and sweep away the energy and transportation industries as we know it. The same Silicon Valley ecosystem that created bit-based technologies that have disrupted atom-based industries is now creating bit- and electron-based technologies that will disrupt atom-based energy industries. Clean Disruption projections (based on technology cost curves, business model innovation as well as product innovation) show that by 2030: - All new energy will be provided by solar or wind. - All new mass-market vehicles will be electric. - All of these vehicles will be autonomous (self-driving) or semi-autonomous. - The new car market will shrink by 80%. - Even assuming that EVs don't kill the gasoline car by 2030, the self-driving car will shrink the new car market by 80%. - Gasoline will be obsolete. Nuclear is already obsolete. - Up to 80% of highways will be redundant. - Up to 80% of parking spaces will be redundant. - The concept of individual car ownership will be obsolete. - The Car Insurance industry will be disrupted. The Stone Age did not end because we ran out of rocks. It ended because a disruptive technology ushered in the Bronze Age. The era of centralized, command-and-control, extraction-resource-based energy sources (oil, gas, coal and nuclear) will not end because we run out of petroleum, natural gas, coal, or uranium. It will end because these energy sources, the business models they employ, and the products that sustain them will be disrupted by superior technologies, product architectures, and business models. This is a technology-based disruption reminiscent of how the cell phone, Internet, and personal computer swept away industries such as landline telephony, publishing, and mainframe computers. Just like those technology disruptions flipped the architecture of information and brought abundant, cheap and participatory information, the clean disruption will flip the architecture of energy and bring abundant, cheap and participatory energy. Just like those previous technology disruptions, the Clean Disruption is inevitable and it will be swift.
This book provides industry insights and fresh ideas for the advancement of the most vital global industry - food. Drawing on their industry and academic expertise the authors have identified three controlling aspects of food business operations that can unleash long term success: consumer health and wellbeing; product and process sustainability; and harnessing advances in digitalization. If developed to their maximum potential these factors have the capability to revolutionize the food sector. Food Industry 4.0 highlights advancement opportunities for the food manufacturing sector, including innovation in products, processes and services, as it seeks to combine productive, efficient and sustainable practices.
This book was created with the intention of informing an international audience about the latest technological aspects for developing smart agricultural applications. As artificial intelligence (AI) takes the main role in this, the majority of the chapters are associated with the role of AI and data analytics components for better agricultural applications. The first two chapters provide alternative, wide reviews of the use of AI, robotics, and the Internet of Things as effective solutions to agricultural problems. The third chapter looks at the use of blockchain technology in smart agricultural scenarios. In the fourth chapter, a future view is provided of an Internet of Things-oriented sustainable agriculture. Next, the fifth chapter provides a governmental evaluation of advanced farming technologies, and the sixth chapter discusses the role of big data in smart agricultural applications. The role of the blockchain is evaluated in terms of an industrial view under the seventh chapter, and the eighth chapter provides a discussion of data mining and data extraction, which is essential for better further analysis by smart tools. The ninth chapter evaluates the use of machine learning in food processing and preservation, which is a critical issue for dealing with issues concerns regarding insufficient foud sources. The tenth chapter also discusses sustainability, and the eleventh chapter focuses on the problem of plant disease prediction, which is among the critical agricultural issues. Similarly, the twelfth chapter considers the use of deep learning for classifying plant diseases. Finally, the book ends with a look at cyber threats to farming automation in the thirteenth chapter and a case study of India for a better, smart, and sustainable agriculture in the fourteenth chapter. This book presents the most critical research topics of today’s smart agricultural applications and provides a valuable view for both technological knowledge and ability that will be helpful to academicians, scientists, students who are the future of science, and industrial practitioners who collaborate with academia.