Download Free Flux Control In Biological Systems Book in PDF and EPUB Free Download. You can read online Flux Control In Biological Systems and write the review.

Comprehending and modelling biomass production, nutrient, and water fluxes in biological systems requires understanding control mechanisms at various levels of organiztion. This new book, with 16 pages of four-colorplates, compares patterns and mechanisms of regulation-starting from enzyme reactions and ending at the population and ecosystem level. By doing so, the book investigates the general principles of how fluxes are adjusted and regulated. Such principles areessential for preparing effective models and for predicting human impacts on ecosystems. Flux Control in Biological Systems: From Enzymes to Populations and Ecosystems will be an essential personal library addition for student and professional environmental biologists, ecologists, physiologists, biochemists, botanists, microbiologists, soil scientists, and zoologists; as well as anyone who investigate patterns of matter and energy transfer in biological systems of different levels of complexity.* Presents the mechanisms of flux control* Explains the similarities of flux control at various levels of complexity and organization* Demonstrates how fluxes are adjusted in complex systems of interacting groups of organisms
Comprehending biomass production, nutrient and water fluxes in biological systems requires understanding of control mechanisms at many levels of organization. This book compares patterns and mechanisms of regulation, starting from enzyme reactions and ending at the population and ecosystem level.
Features review questions at the end of each chapter; Includes suggestions for recommended reading; Provides a glossary of ecological terms; Has a wide audience as a textbook for advanced undergraduate students, graduate students and as a reference for practicing scientists from a wide array of disciplines
Written and edited by some of the most well-respected authors in the area of the adaptation of plants and animals to climate change, this groundbreaking new work is an extremely important scientific contribution to the study of global warming. Global climate change is one of the most serious and pressing issues facing our planet. Rather than a "silver bullet" or a single study that solves it, the study of global climate change is like a beach, with each contribution a grain of sand, gathered together as a whole to create a big picture, moving the science forward. This new groundbreaking study focuses on the adaptation and tolerance of plants and animal life to the harsh conditions brought on by climate change or global warming. Using the papers collected here, scientists can better understand global climate change, its causes, results, and, ultimately, the future of life on our planet. The first section lays out a methodology and conceptual direction of the work as a whole, covering the modeling, approaches, and the impacts studied throughout the book. The second section focuses on certain hypotheses laid out by the authors regarding how plants and animal life can adapt and survive in extreme environments. The third section compiles a series of ecological experiments and their conclusions, and a final section is dedicated to previous scientific breakthroughs in this field and the scientists who made them. Whether for the scientist in the field, the student, or as a reference, this groundbreaking new work is a must-have. Focusing on a small part of the global climate change "beach," this "grain of sand" is an extremely important contribution to the scientific literature and a step forward in understanding the problems and potentialities of the issue.
Anthropogenic release of carbon dioxide into the atmosphere has been recognized as the primary agent in global climate change. The volume discusses the possibilities for limiting that increase by the long-term storage of carbon in soils, vegetation, wetlands and oceans. Each of these storage media is analysed in detail to elucidate those processes responsible for the uptake and release of carbon. Several chapters address the practical prospects for deliberate interventions aimed at adjusting the balance in favour of uptake over release, i.e. sequestration, while having regard to simultaneous changes in the various environments.
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
This book brings together the various fields of functional genomics and systems biology that provide information on metabolic function. There is special emphasis on the identification of drug targets. The book includes practical examples from the various "omic" sciences as well as theoretical examples of how integrated knowledge of these sciences can be applied to drug discovery. It is of interest to researchers in the pharmaceutical drug discovery environment.
The exponential increase in computing power in the late twentieth century has allowed researchers to gather, process and analyze large volumes of information and construct rational paradigms of systems. Life sciences are no exception and computing advances have led to the birth of fields such as functional genomics and bioinformatics and facilitated an expansion of our understanding of biological systems. Biological Systems: Complexity and Artificial Life is an essential primer on systems biology for biologists and researchers having a multidisciplinary background. The volume covers a variety of theoretical models explaining biological processes. The book starts with an introductory chapter on the classical molecular biology paradigm and progresses towards concepts related to enzyme kinetics, non equilibrium dynamics, cellular thermodynamics, molecular motion in cells and more. The book concludes with a philosophical note on the concept of the biological system.
This advanced textbook is tailored for an introductory course in Systems Biology and is well-suited for biologists as well as engineers and computer scientists. It comes with student-friendly reading lists and a companion website featuring a short exam prep version of the book and educational modeling programs. The text is written in an easily accessible style and includes numerous worked examples and study questions in each chapter. For this edition, a section on medical systems biology has been included.
Comprehensive and global in scope, Environmental Pollution and Plant Responses provides an analysis of the research on the factors contributing to the deteriorating environmental quality and its effect on plant performance. The issues include: environmental pollution and global climate change, response patterns of plants at different levels, mechanisms of interaction, tolerance strategies and future research prospects. The author evaluates trends and gives management strategies for abating the problem. This volume highlights the complexities of environmental problems and the affect of pollution on every level of the ecosystem.