Download Free Fluid Structure Interaction During Seismic Excitation Book in PDF and EPUB Free Download. You can read online Fluid Structure Interaction During Seismic Excitation and write the review.

This book provides a comprehensive overview of the numerical simulation of fluid–structure interaction (FSI) for application in marine engineering. Fluid–Structure Interaction details a wide range of modeling methods (numerical, semi-analytical, empirical), calculation methods (finite element, boundary element, finite volume, lattice Boltzmann method) and numerical approaches (reduced order models and coupling strategy, among others). Written by a group of experts and researchers from the naval sector, this book is intended for those involved in research or design who are looking to gain an overall picture of hydrodynamics, seakeeping and performance under extreme loads, noise and vibration. Using a concise, didactic approach, the book describes the ways in which numerical simulation contributes to modeling and understanding fluid–structure interaction for designing and optimizing the ships of the future.
After the March 11, 2011, earthquake in Japan, there is overwhelming interest in worst-case analysis, including the critical excitation method. Nowadays, seismic design of structures performed by any seismic code is based on resisting previous natural earthquakes. Critical Excitation Methods in Earthquake Engineering, Second Edition, develops a new framework for modeling design earthquake loads for inelastic structures. The Second Edition, includes three new chapters covering the critical excitation problem for multi-component input ground motions, and that for elastic-plastic structures in a more direct way are incorporated and discussed in more depth. Finally, the problem of earthquake resilience of super high-rise buildings is discussed from broader viewpoints. - Solves problems of earthquake resilience of super high-rise buildings - Three new chapters on critical excitation problem for multi-component input ground motions - Includes numerical examples of one and two-story models
The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace, civil, and nuclear engineers; physicists; designers of road tankers and ship tankers; and mathematicians. Beginning with the fundamentals of liquid sloshing theory, this book takes the reader systematically from basic theory to advanced analytical and experimental results in a self-contained and coherent format. The book is divided into four sections. Part I deals with the theory of linear liquid sloshing dynamics; Part II addresses the nonlinear theory of liquid sloshing dynamics, Faraday waves, and sloshing impacts; Part III presents the problem of linear and nonlinear interaction of liquid sloshing dynamics with elastic containers and supported structures; and Part IV considers the fluid dynamics in spinning containers and microgravity sloshing. This book will be invaluable to researchers and graduate students in mechanical and aeronautical engineering, designers of liquid containers, and applied mathematicians.
Fluid-Structure Interaction (FSI), also known as engineering fluid mechanics, deals with mutual interaction between fluid and structural components. Fluid flow depending on the structural shape, motion, surface, and structural roughness, acts as mechanical forces on the structure. FSI can be seen everywhere in medicine, engineering, aerospace, the sciences, and even our daily life. This book provides the basic concept of fluid flow behavior in interaction with structures, which is crucial for almost all engineering disciplines. Along with the fundamental principles, the book covers a variety of FSI problems ranging from fundamentals of fluid mechanics to plasma physics, wind turbines and their turbulence, heat transfer, magnetohydrodynamics, and dam-reservoir systems.
Publishing papers presented at the Fourth International Conference on Fluid Structure Interactions, this book features contributions from experts specialising in this field on new ideas and the latest techniques. A valuable addition to this successful series and will be of great interest to mechanical and structural engineers, offshore engineers, earthquake engineers, naval engineers and any other experts involved in topics related to fluid structure interaction. Topics covered include: Hydrodynamic Forces; Response of Structures including Fluid Dynamic; Offshore Structure and Ship Dynamics; Fluid Pipeline Interactions; Structure Response to Serve Shock and Blast Loading; Vortex Shedding and Flow Induced Vibrations; Cavitations Effects in Turbo Machines and Pumps; Wind Effects on Bridges and Tall Structures; Mechanics of Cables, Rivers and Moorings; Building Biofluids and Biological Tissue Interaction Problems in CFD; Experimental Studies and Validation; Vibrations and Noise; Free Surface Flows and Moving Boundary Problems.
Written by an eminent authority in the field, Modelling of Mechanical Systems: Fluid-Structure Interaction is the third in a series of four self-contained volumes suitable for practitioners, academics and students alike in engineering, physical sciences and applied mechanics. The series skilfully weaves a theoretical and pragmatic approach to modelling mechanical systems and to analysing the responses of these systems. The study of fluid-structure interactions in this third volume covers the coupled dynamics of solids and fluids, restricted to the case of oscillatory motions about a state of static equilibrium. Physical and mathematical aspects of modelling these mechanisms are described in depth and illustrated by numerous worked out exercises.· Written by a world authority in the field in a clear, concise and accessible style · Comprehensive coverage of mathematical techniques used to perform computer-based analytical studies and numerical simulations · A key reference for mechanical engineers, researchers and graduate students
Seismic Design of Industrial Facilities demands a deep knowledge on the seismic behaviour of the individual structural and non-structural components of the facility, possible interactions and last but not least the individual hazard potential of primary and secondary damages. From 26.-27. September 2013 the International Conference on Seismic Design of Industrial Facilities firstly addresses this broad field of work and research in one specialized conference. It brings together academics, researchers and professional engineers in order to discuss the challenges of seismic design for new and existing industrial facilities and to compile innovative current research. This volume contains 50 contributions to the SeDIF-Conference covering the following topics with respect to the specific conditions of plant design: · International building codes and guidelines on the seismic design of industrial facilities · Seismic design of non-structural components · Seismic design of silos and liquid-filled tanks - Soil-structure-interaction effects · Seismic safety evaluation, uncertainties and reliability analysis · Innovative seismic protection systems · Retrofitting The SeDIF-Conference is hosted by the Chair of Structural Statics and Dynamics of RWTH Aachen University, Germany, in cooperation with the Institute for Earthquake Engineering of the Dalian University of Technology, China.
Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.
Handbook of Fluid Dynamics offers balanced coverage of the three traditional areas of fluid dynamics—theoretical, computational, and experimental—complete with valuable appendices presenting the mathematics of fluid dynamics, tables of dimensionless numbers, and tables of the properties of gases and vapors. Each chapter introduces a different fluid dynamics topic, discusses the pertinent issues, outlines proven techniques for addressing those issues, and supplies useful references for further research. Covering all major aspects of classical and modern fluid dynamics, this fully updated Second Edition: Reflects the latest fluid dynamics research and engineering applications Includes new sections on emerging fields, most notably micro- and nanofluidics Surveys the range of numerical and computational methods used in fluid dynamics analysis and design Expands the scope of a number of contemporary topics by incorporating new experimental methods, more numerical approaches, and additional areas for the application of fluid dynamics Handbook of Fluid Dynamics, Second Edition provides an indispensable resource for professionals entering the field of fluid dynamics. The book also enables experts specialized in areas outside fluid dynamics to become familiar with the field.