Download Free Fluid Flow Through Packed And Fluidized Systems Book in PDF and EPUB Free Download. You can read online Fluid Flow Through Packed And Fluidized Systems and write the review.

A concise and clear treatment of the fundamentals of fluidization, with a view to its applications in the process and energy industries.
The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.
Fluidization Engineering, Second Edition, expands on its original scope to encompass these new areas and introduces reactor models specifically for these contacting regimes. Completely revised and updated, it is essentially a new book. Its aim is to distill from the thousands of studies those particular developments that are pertinent for the engineer concerned with predictive methods, for the designer, and for the user and potential user of fluidized beds. - Covers the recent advances in the field of fluidization. - Presents the studies of developments necessary to the engineers, designers, and users of fluidized beds.
A total of 2519 annotated references to the unclassified report literature is presented. Subjects covered under heat transfer and fluid flow include radioinduced heating; boiling; boiler, evaporators, pump, and heat exchanger design; hydrodynamics; coolants and their properties; thermal and flow instrumentation; high temperature materials; thermal properties of materials; and thermal insulation. Subjects covered less completely include thermodynamics; aerodynamics; high temperature corrosion; corrosion specific to heat transfer systems; erosion; mass transfer; corrosion film formation and effects; coolant processing and radioactivity; radiation effects of heat transfer materials; and pertinent data of thermonuclear processes. Subject, report number availability, and author indexes are given.