Download Free Flow Through Heterogeneous Geologic Media Book in PDF and EPUB Free Download. You can read online Flow Through Heterogeneous Geologic Media and write the review.

This book integrates principles of flow through porous media with stochastic analyses, for advanced-level students, researchers and professionals in hydrogeology and hydraulics.
This textbook integrates classic principles of flow through porous media with recently developed stochastic analyses to provide new insight on subsurface hydrology. Importantly, each of the authors has extensive experience in both academia and the world of applied groundwater hydrology. The book not only presents theories but also emphasizes their underlying assumptions, limitations, and the potential pitfalls that may occur as a result of blind application of the theories as 'cookie-cutter' solutions. The book has been developed for advanced-level courses on groundwater fluid flow, hydraulics, and hydrogeology, in either civil and environmental engineering or geoscience departments. It is also a valuable reference text for researchers and professionals in civil and environmental engineering, geology, soil science, environmental science, and petroleum and mining engineering.
This book provides a unified and comprehensive overview of physical explanations of the stochastic concepts of solute transport processes, important scaling issues, and practical tools for the analysis of solute transport.
Capillary phenomena occur in both natural and human-made systems, from equilibria in the presence of solids (grains, walls, metal wires) to multiphase flows in heterogeneous and fractured porous media. This book, composed of two volumes, develops fluid mechanics approaches for two immiscible fluids (water/air or water/oil) in the presence of solids (tubes, joints, grains, porous media). Their hydrodynamics are typically dominated by capillarity and viscous dissipation. This first volume presents the basic concepts and investigates two-phase equilibria, before analyzing two-phase hydrodynamics in discrete and/or statistical systems (tubular pores, planar joints). It then studies flows in heterogeneous and stratified porous media, such as soils and rocks, based on Darcy’s law. This analysis includes unsaturated flow (Richards equation) and two-phase flow (Muskat equations). Overall, the two volumes contain basic physical concepts, theoretical analyses, field investigations and statistical and numerical approaches to capillary-driven equilibria and flows in heterogeneous systems
In spite of many years of intensive study, our current abilities to quantify and predict contaminant migration in natural geological formations remain severely limited. The heterogeneity of these formations over a wide range of scales necessitates consideration of sophisticated transport theories. The evolution of such theories has escalated to the point that a review of the subject seems timely. While conceptual and mathematical developments were crucial to the introduction of these new approaches, there are now too many publications that contain theoretical abstractions without regard to real systems, or incremental improvements to existing theories which are known not to be applicable. This volume brings together articles representing a broad spectrum of state-of-the-art approaches for characterization and quantification of contaminant dispersion in heterogeneous porous media. Audience: The contributions are intended to be as accessible as possible to a wide readership of academics and professionals with diverse backgrounds such as earth sciences, subsurface hydrology, petroleum engineering, and soil physics.
Stochastic Methods for Flow in Porous Media: Coping with Uncertainties explores fluid flow in complex geologic environments. The parameterization of uncertainty into flow models is important for managing water resources, preserving subsurface water quality, storing energy and wastes, and improving the safety and economics of extracting subsurface mineral and energy resources. This volume systematically introduces a number of stochastic methods used by researchers in the community in a tutorial way and presents methodologies for spatially and temporally stationary as well as nonstationary flows. The author compiles a number of well-known results and useful formulae and includes exercises at the end of each chapter. - Balanced viewpoint of several stochastic methods, including Greens' function, perturbative expansion, spectral, Feynman diagram, adjoint state, Monte Carlo simulation, and renormalization group methods - Tutorial style of presentation will facilitate use by readers without a prior in-depth knowledge of Stochastic processes - Practical examples throughout the text - Exercises at the end of each chapter reinforce specific concepts and techniques - For the reader who is interested in hands-on experience, a number of computer codes are included and discussed
This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.
Groundwater theme is a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Groundwater is water located beneath the ground surface in soil pore spaces and in the fractures of lithologic formations. This theme presents a perspective of the field of groundwater and an overview of the important aspects of the subject such as, natural origin and distribution, characteristics under diverse climates and surrounding rocky environments, exploration and management, natural quality and human related sources of contamination, sustainable exploitation of resources, protection and current research trends. The content of the theme on Groundwater is organized with state-of-the-art presentations covering several topics: Origin, Distribution, Formation, and Effects; Typical Hydrogeological Scenarios; Transport Processes in Groundwater; Transport Phenomena and Vulnerability of the Unsaturated Zone; Groundwater Development; Groundwater Use and Protection; Groundwater Management: An Overview of Hydro-geology, Economic Values and Principles of Management; Special Issues in Groundwater, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, Managers, and Decision makers and NGOs
This book reports on innovative research in solid and fluid mechanics, and thermal engineering, giving a special emphasis on methods, modeling, and simulation tools for analyzing material behavior and energy systems. It gathers the best papers presented at 15th International Moroccan Congress of Mechanics "Congrès de Mécanique", CMM 2022, held on May 24-27, 2022, in Casablanca, Morocco, and organized by the Moroccan Society of Mechanics (SMSM) and the Faculty of Science Ain Chock of the University of Hassan II, Casablanca, Morocco. With a good balance of theory and practice, the book offers a timely snapshot of current advances in mechanics, and a source of inspiration for future research and international collaborations.
The book presents an overview of recent advances in knowledge related to the assessment and management of groundwater resources, giving special attention to the uncertainties related to climate change and variability. While proposing strategies of groundwater management as adaptation, alternative and resilience under the changing environments, this book also discusses new directions and initiatives of hydrological study, in particular on the groundwater. Groundwater is a major source of water across much of the world, and acts as a component of the global water cycle on the Earth. Groundwater has the capacity to balance large swings in precipitation and has the potential to supplement surface-water resources when they are close to the limits of sustainability such as during drought. Although groundwater is pivotal to sustain water supplies, these important resources are vulnerable to increased human activities and the uncertain consequences of climate change. This book presents that groundwater with longer resident time of water circulation can be an alternative water resources and environment in changing climate. Assessments of groundwater services and benefit as well as risk are important for sustainable groundwater uses under the climate change. Groundwater which is one of the leys of adaptation to climate change should be treated as common resources and environment beyond the tragedy of the commons and dilemma of the boundaries. While providing a comprehensive description of hydrogeological characteristics of groundwater systems, the present volume also covers important aspects of legal and institutional contexts required for groundwater resources management as well as social and economic considerations. This publication may contribute to an improved understanding of the impacts of climate change and human activity on groundwater resources, provides useful guidance for policy makers and planners to include groundwater into climate change adaptation schemes and strategies.