Download Free Flow And Mixing Optimization Of An Existing Biogas Plant Through Cfd Simulation And Velocity Measurements Prepared Book in PDF and EPUB Free Download. You can read online Flow And Mixing Optimization Of An Existing Biogas Plant Through Cfd Simulation And Velocity Measurements Prepared and write the review.

Bachelor Thesis from the year 2016 in the subject Engineering - Mechanical Engineering, grade: 94%, German Jordanian University (hosted by Hamburg University of Technology), language: English, abstract: This research project enables further development and improvement of the mixing efficiency in an existing biogas plant, by utilizing CFD simulation as well as a newly developed flow sensor in addition to supportive laboratory tests. The flow was analyzed considering the following variables: The mixing time, the Dry Matter (DM) content, the positioning of the agitators and how it can be related to the amount of velocity dead-zones. The velocity measurements took place at the biogas plant of the company Ardestorfer Bioenergie GmbH in the district of Buxtehude. The current plant capacity is approximately 1.6 MWel using animals manure, energy crops as well as agricultural residuals. In order to be able to perform the CFD simulation, a complete 3D model had to be done of the examined fermenter and the mixing agitators. Moreover, the current setup including fluid properties, boundary and initial conditions had to be taken into consideration. Velocity measurements were used as a validation approach for the simulation results, furthermore to acquire an overview of the flow behavior over the investigated mixing period. Firstly, it was found that at higher DM content the flow seemed to be more stable, and the velocity values get quite higher at the examined points. Moreover, at higher DM content (9.35% compared with 8.8%) the velocity dead-zones seemed to be approximately 70% less. Secondly, another approach was considered to improve the mixing and to minimize the dead-zones by changing the position of the main agitator. The new scenario showed fewer dead-zones by approximately 65% according to the CFD model. Thirdly, at all scenarios and setups, the flow seemed to reach the maximum possible velocity, and rather motion distribution after 150-180 seconds. Showing no remarkable improvement after this period. The mentioned findings were concluded based on comparisons between different velocity measurements as well as CFD simulation results at different operating conditions and setups. Being able to offer proper recommendations for a better energy efficiency in terms of lower energy consumption and better mixing all over the fermenter.
Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.
Modelling Fluid Flow presents invited lectures, workshop summaries and a selection of papers from a recent international conference CMFF '03 on fluid technology. The lectures follow the current evolution and the newest challenges of the computational methods and measuring techniques related to fluid flow. The workshop summaries reflect the recent trends, open questions and unsolved problems in the mutually inspiring fields of experimental and computational fluid mechanics. The papers cover a wide range of fluids engineering, including reactive flow, chemical and process engineering, environmental fluid dynamics, turbulence modelling, numerical methods, and fluid machinery.
Anaerobic digestion is a biochemical degradation process that converts complex organic material, such as animal manure, into methane and other byproducts. Part of the author's Wastewater Microbiology series, Microbiology of Anareboic Digesters eschews technical jargon to deliver a practical, how-to guide for wastewater plant operators.
This book is the result of a careful selection of contributors in the field of CFD. It is divided into three sections according to the purpose and approaches used in the development of the contributions. The first section describes the "high-performance computing" (HPC) tools and their impact on CFD modeling. The second section is dedicated to "CFD models for local and large-scale industrial phenomena." Two types of approaches are basically contained here: one concerns the adaptation from global to local scale, - e.g., the applications of CFD to study the climate changes and the adaptations to local scale. The second approach, very challenging, is the multiscale analysis. The third section is devoted to "CFD in numerical modeling approach for experimental cases." Its chapters emphasize on the numerical approach of the mathematical models associated to few experimental (industrial) cases. Here, the impact and the importance of the mathematical modeling in CFD are focused on. It is expected that the collection of these chapters will enrich the state of the art in the CFD domain and its applications in a lot of fields. This collection proves that CFD is a highly interdisciplinary research area, which lies at the interface of physics, engineering, applied mathematics, and computer science.
In this expert handbook both the topics and contributors are selected so as to provide an authoritative view of possible applications for this new technology. The result is an up-to-date survey of current challenges and opportunities in the design and operation of bioreactors for high-value products in the biomedical and chemical industries. Combining theory and practice, the authors explain such leading-edge technologies as single-use bioreactors, bioreactor simulators, and soft sensor monitoring, and discuss novel applications, such as stem cell production, process development, and multi-product reactors, using case studies from academia as well as from industry. A final section addresses the latest trends, including culture media design and systems biotechnology, which are expected to have an increasing impact on bioreactor design. With its focus on cutting-edge technologies and discussions of future developments, this handbook will remain an invaluable reference for many years to come.
Written as a practical introduction to biogas plant design and operation, this book fills a huge gap by presenting a systematic guide to this emerging technology -- information otherwise only available in poorly intelligible reports by US governmental and other official agencies. The author draws on teaching material from a university course as well as a wide variety of industrial biogas projects he has been involved with, thus combining didactical skill with real-life examples. Alongside biological and technical aspects of biogas generation, this timely work also looks at safety and legal aspects as well as environmental considerations.
According to the EU Commission, the heating and cooling sector must sharply reduce its energy consumption and cut its use of fossil fuel in order to meet the EU's climate and energy goals. In the Nordic countries, a lot of effort has already been put to make heat production and consumption energy efficient and to decrease the emissions. To disseminate these experiences and good practices wider in Europe, and to identify further needs for co-operation, this study attempts to identify the common approaches of the Nordic countries towards the EU’s heating and cooling strategy and Winter Package regulation. This report describes the results of the work based on Pöyry’s analysis of the current heating and cooling sector practices and regulation in the Nordic countries, and interviews of the regulators and energy industry representatives from each country.
Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. - Updates and informs the reader on the latest research findings using original reviews - Written by leading industry experts and scholars - Reviews and analyzes developments in the field
This book offers comprehensive coverage of the design, analysis, and operational aspects of biomass gasification, the key technology enabling the production of biofuels from all viable sources--some examples being sugar cane and switchgrass. This versatile resource not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass gasifiers. The author provides many worked out design problems, step-by-step design procedures and real data on commercially operating systems. After fossil fuels, biomass is the most widely used fuel in the world. Biomass resources show a considerable potential in the long term if residues are properly handled and dedicated energy crops are grown. Includes step-by-step design procedures and case studies for Biomass GasificationProvides worked process flow diagrams for gasifier design. Covers integration with other technologies (e.g. gas turbine, engine, fuel cells)