Download Free Flood Forecasting Using Artificial Neural Networks Book in PDF and EPUB Free Download. You can read online Flood Forecasting Using Artificial Neural Networks and write the review.

This dissertation considers various questions with respect to the effects of salinity on nutrification: what are the main inhibiting factors causing the effects, do all salts have similar effects, what is the maximum acceptable salt level, are ammonia oxidisers or nitrite oxidizers most sensitive to salt stress, can nitrifiers adapt to long term salt stress and are some specific nitrifiers more resistant to salt stress than others? Research was carried out at laboratory scale and in full-scale plants and modelling was employed in both phases to provide a mathematical description for salt inhibition on nitrification and to facilitate the comparison. The result has led to an improved understanding of the effect of salinity on nitrification. The results can be used to improve the sustainability of the exisisting wastewater treatment plants operated under salt stress.
Flood disasters continue to occur in many countries in the world and cause tremendous casualties and property damage. To mitigate the effects of floods, a range of structural and non-structural measures have been employed including dykes, channelling, flood-proofing property, land-use regulation and flood warning schemes. Such schemes can include the use of Artificial Neural Networks (ANN) for modelling the rainfall run-off process as it is a quick and flexible approach which gives very promising results. However, the inability of ANN to extrapolate beyond the limits of the training range is a serious limitation of the method, and this book examines ways of side-stepping or solving this complex issue.
Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.
Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example
The disciplines of science and engineering rely heavily on the forecasting of prospective constraints for concepts that have not yet been proven to exist, especially in areas such as artificial intelligence. Obtaining quality solutions to the problems presented becomes increasingly difficult due to the number of steps required to sift through the possible solutions, and the ability to solve such problems relies on the recognition of patterns and the categorization of data into specific sets. Predictive modeling and optimization methods allow unknown events to be categorized based on statistics and classifiers input by researchers. The Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering is a critical reference source that provides comprehensive information on the use of optimization techniques and predictive models to solve real-life engineering and science problems. Through discussions on techniques such as robust design optimization, water level prediction, and the prediction of human actions, this publication identifies solutions to developing problems and new solutions for existing problems, making this publication a valuable resource for engineers, researchers, graduate students, and other professionals.
This book focuses on the application of geospatial technologies to study the land use land cover (LULC) dynamics, agricultural water management, water resources assessment and modeling, and studies on natural disasters. LULC dynamics is one of the major research themes for studying global environmental change using remote sensing data. The section on LULC dynamics covers the multi-variate criteria for land use and land cover classification and change assessment in the mountainous regions. Further, LULC change detection of the Tons river basin and LULC dynamics at decadal frequency are studied to derive adaptation and mitigation strategies. Landscape-level forest disturbance modeling, together with conservation implications, is also included. The watershed management approach is necessary for comprehensive management of land and water resources of any region, where studies on multi-criteria analysis for rainwater harvesting planning and its impact on land use land cover transformations in rain-fed areas using geospatial technologies are presented in this book. The book will be useful for academics, water practitioners, scientists, water managers, environmentalists, and administrators, NGOs, researchers, and students who are actively involved in the application of geospatial technologies in LULC studies, agricultural water management and hydrological modelling and natural disasters for addressing the challenges being posed by climate change while addressing issues of food and water securities
This book brings together a representative set of Earth System Science (ESS) applications of the neural network (NN) technique. It examines a progression of atmospheric and oceanic problems, which, from the mathematical point of view, can be formulated as complex, multidimensional, and nonlinear mappings. It is shown that these problems can be solved utilizing a particular type of NN – the multilayer perceptron (MLP). This type of NN applications covers the majority of NN applications developed in ESSs such as meteorology, oceanography, atmospheric and oceanic satellite remote sensing, numerical weather prediction, and climate studies. The major properties of the mappings and MLP NNs are formulated and discussed. Also, the book presents basic background for each introduced application and provides an extensive set of references. “This is an excellent book to learn how to apply artificial neural network methods to earth system sciences. The author, Dr. Vladimir Krasnopolsky, is a universally recognized master in this field. With his vast knowledge and experience, he carefully guides the reader through a broad variety of problems found in the earth system sciences where neural network methods can be applied fruitfully. (...) The broad range of topics covered in this book ensures that researchers/graduate students from many fields (...) will find it an invaluable guide to neural network methods.” (Prof. William W. Hsieh, University of British Columbia, Vancouver, Canada) “Vladimir Krasnopolsky has been the “founding father” of applying computation intelligence methods to environmental science; (...) Dr. Krasnopolsky has created a masterful exposition of a young, yet maturing field that promises to advance a deeper understanding of best modeling practices in environmental science.” (Dr. Sue Ellen Haupt, National Center for Atmospheric Research, Boulder, USA) “Vladimir Krasnopolsky has written an important and wonderful book on applications of neural networks to replace complex and expensive computational algorithms within Earth System Science models. He is uniquely qualified to write this book, since he has been a true pioneer with regard to many of these applications. (...) Many other examples of creative emulations will inspire not just readers interested in the Earth Sciences, but any other modeling practitioner (...) to address both theoretical and practical complex problems that may (or will!) arise in a complex system." ” (Prof. Eugenia Kalnay, University of Maryland, USA)
A detailed and comprehensive description of the state of the art in the field of flood forecasting opens this work. Advantages and shortcomings of currently available methods are identified and discussed. Amongst others, one important aspect considers the most exigent weak point of today's forecasting systems: The representation of all the fundamentally different event specific patterns of flood formation with one single set of model parameters. The study exemplarily proposes an alternative for overcoming this restriction by taking into account the different process characteristics of flood events via a dynamic parameterisation strategy. Other fundamental shortcomings in current approaches especially restrict the potential for real time flash flood forecasting, namely the considerable computational requirements together with the rather cumbersome operation of reliable physically based hydrologic models. The new PAI-OFF methodology (Process Modelling and Artificial Intelligence for Online Flood Forecasting) considers these problems and offers a way out of the general dilemma. It combines the reliability and predictive power of physically based, hydrologic models with the operational advantages of artificial intelligence. These operational advantages feature extremely low computation times, absolute robustness and straightforward operation. Such qualities easily allow for predicting flash floods in small catchments taking into account precipitation forecasts, whilst extremely basic computational requirements open the way for online Monte Carlo analysis of the forecast uncertainty. The study encompasses a detailed analysis of hydrological modeling and a problem specific artificial intelligence approach in the form of artificial neural networks, which build the PAI-OFF methodology. Herein, the synthesis of process modelling and artificial neural networks is achieved by a special training procedure. It optimizes the network according to the patterns of possible catchment.