Download Free Flomania A European Initiative On Flow Physics Modelling Book in PDF and EPUB Free Download. You can read online Flomania A European Initiative On Flow Physics Modelling and write the review.

This volume offers of the EU-funded 5th Framework project, FLOMANIA (Flow Physics Modelling – An Integrated Approach). The book presents an introduction to the project, exhibits partners’ methods and approaches, and provides comprehensive reports of all applications treated in the project. A complete chapter is devoted to a description of turbulence models used by the partners together with a section on lessons learned, accompanied by a comprehensive list of references.
This volume contains results gained from the EU-funded 6th Framework project ADIGMA (Adaptive Higher-order Variational Methods for Aerodynamic Applications in Industry). The goal of ADIGMA was the development and utilization of innovative adaptive higher-order methods for the compressible flow equations enabling reliable, mesh independent numerical solutions for large-scale aerodynamic applications in aircraft industry. The ADIGMA consortium was comprised of 22 organizations which included the main European aircraft manufacturers, the major European research establishments and several universities, all with well proven expertise in Computational Fluid Dynamics (CFD). The book presents an introduction to the project, exhibits partners’ methods and approaches and provides a critical assessment of the newly developed methods for industrial aerodynamic applications. The best numerical strategies for integration as major building blocks for the next generation of industrial flow solvers are identified.
Preface “In aircraft design, efficiency is determined by the ability to accurately and rel- bly predict the occurrence of, and to model the development of, turbulent flows. Hence, the main objective in industrial computational fluid dynamics (CFD) is to increase the capabilities for an improved predictive accuracy for both complex flows and complex geometries”. This text part taken from Haase et al (2006), - scribing the results of the DESider predecessor project “FLOMANIA” is still - and will be in future valid. With an ever-increasing demand for faster, more reliable and cleaner aircraft, flight envelopes are necessarily shifted into areas of the flow regimes exhibiting highly unsteady and, for military aircraft, unstable flow behaviour. This undou- edly poses major new challenges in CFD; generally stated as an increased pred- tive accuracy whist retaining “affordable” computation times. Together with highly resolved meshes employing millions of nodes, numerical methods must have the inherent capability to predict unsteady flows. Although at present, (U)RANS methods are likely to remain as the workhorses in industry, the DESider project focussed on the development and combination of these approaches with LES methods in order to “bridge” the gap between the much more expensive (due to high Reynolds numbers in flight), but more accurate (full) LES.
Turbulence modelling has long been, and will remain, one of the most important t- ics in turbulence research, challenging scientists and engineers in the academic world and in the industrial society. Over the past decade, Detached Eddy Simulation (DES) and other hybrid RANS-LES methods have received increasing attention from the turbulence-research community, as well as from industrial CFD engineers. Indeed, as an engineering modelling approach, hybrid RANS-LES methods have acquired a remarkable profile in modelling turbulent flows of industrial interest in relation to, for example, transportation, energy production and the environment. The advantage exploited with hybrid RANS-LES modelling approaches, being - tentially more computationally efficient than LES and more accurate than (unsteady) RANS, has motivated numerous research and development activities. These activities, together with industrial applications, have been further facilitated over the recent years by the rapid development of modern computing resources. As a European initiative, the EU project DESider (Detached Eddy Simulation for Industrial Aerodynamics, 2004-2007), has been one of the earliest and most systematic international R&D effort with its focus on development, improvement and applications of a variety of existing and new hybrid RANS-LES modelling approaches, as well as on related numerical issues. In association with the DESider project, two subsequent international symposia on hybrid RANS-LES methods have been arranged in Stockholm (Sweden, 2005) and in Corfu (Greece, 2007), respectively. The present book is a result of the Second Symposium on Hybrid RANS-LES Methods, held in Corfu, Greece, 17-18 June 2007.
The present book contains contributions presented at the Fourth Symposium on Hybrid RANS-LES Methods, held in Beijing, China, 28-30 September 2011, being a continuation of symposia taking place in Stockholm (Sweden, 2005), in Corfu (Greece, 2007), and Gdansk (Poland, 2009). The contributions to the last two symposia were published as NNFM, Vol. 97 and Vol. 111. At the Beijing symposium, along with seven invited keynotes, another 46 papers (plus 5 posters) were presented addressing topics on Novel turbulence-resolving simulation and modelling, Improved hybrid RANS-LES methods, Comparative studies of difference modelling methods, Modelling-related numerical issues and Industrial applications.. The present book reflects recent activities and new progress made in the development and applications of hybrid RANS-LES methods in general.
Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach. This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.
This book reports on the latest developments in computational fluid dynamics and turbulence modeling, with a special emphasis on hybrid RANS-LES methods and their industrial applications. It gathers the proceedings of the Sixth Symposium on Hybrid RANS-LES Methods, held on September 26-28 in Strasbourg, France. The different chapters covers a wealth of topics such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. Further topics include wall-modelled Large Eddy Simulation (WMLES), embedded LES, Lattice-Bolzman methods, turbulence-resolving applications and comparisons between LES, hybrid RANS-LES and URANS methods. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics.
Viscous flow is treated usually in the frame of boundary-layer theory and as two-dimensional flow. Books on boundary layers give at most the describing equations for three-dimensional boundary layers, and solutions often only for some special cases. This book provides basic principles and theoretical foundations regarding three-dimensional attached viscous flow. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers. This wider scope is necessary in view of the theoretical and practical problems to be mastered in practice. The topics are weak, strong, and global interaction, the locality principle, properties of three-dimensional viscous flow, thermal surface effects, characteristic properties, wall compatibility conditions, connections between inviscid and viscous flow, flow topology, quasi-one- and two-dimensional flows, laminar-turbulent transition and turbulence. Though the primary flight speed range is that of civil air transport vehicles, flows past other flying vehicles up to hypersonic speeds are also considered. Emphasis is put on general three-dimensional attached viscous flows and not on three-dimensional boundary layers, as this wider scope is necessary in view of the theoretical and practical problems that have to be overcome in practice. The specific topics covered include weak, strong, and global interaction; the locality principle; properties of three-dimensional viscous flows; thermal surface effects; characteristic properties; wall compatibility conditions; connections between inviscid and viscous flows; flow topology; quasi-one- and two-dimensional flows; laminar-turbulent transition; and turbulence. Detailed discussions of examples illustrate these topics and the relevant phenomena encountered in three-dimensional viscous flows. The full governing equations, reference-temperature relations for qualitative considerations and estimations of flow properties, and coordinates for fuselages and wings are also provided. Sample problems with solutions allow readers to test their understanding.
Hybrid modelling of turbulent flows, combining RANS and LES techniques, has received increasing attention over the past decade to fill the gap between (U)RANS and LES computations in aerodynamic applications at industrially relevant Reynolds numbers. With the advantage of hybrid RANS-LES modelling approaches, being considerably more computationally efficient than full LES and more accurate than (U)RANS, particularly for unsteady aerodynamic flows, has motivated numerous research and development activities. These activities have been increasingly stimulated by the provision of modern computing facilities. The present book contains the contributions presented at the Third Symposium on Hybrid RANS-LES Methods, held in Gdansk, Poland, 10-12 June 2009. To a certain extent, this conference was a continuation of the first symposium taking place in Stockholm (Sweden, 2005) and the second in Corfu (Greece, 2007). Motivated by the extensive interest in the research community, the papers presented at the Corfu symposium were published by Springer in the book entitled “Advances in Hybrid RANS-LES Modelling” (in Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 97). At the Gdansk symposium, along with four invited keynotes, given respectively by S. Fu, U. Michel, M. Sillen and P. Spalart, another 28 papers were presented on the following topics: Unsteady RANS, LES, Improved DES Methods, Hybrid RANS-LES Methods, DES versus URANS and other Hybrid Methods, Modelli- related Numerical Issues and Industrial Applications. After the symposium all full papers have been further reviewed and revised for publication in the present book.