Download Free Flexibility Driven Operation For Low Carbon Power And Energy Systems Book in PDF and EPUB Free Download. You can read online Flexibility Driven Operation For Low Carbon Power And Energy Systems and write the review.

"The integration of higher shares of renewable generation is essential for decarbonizing electricity generation. However, the main challenge of integrating renewable energy sources into a power system is the management of the increased disturbances in power balancing. These disturbances are caused by the inherent variability and uncertainty of renewable energy sources, which can put significant stress on reserve requirements in the system. Traditional power system operation paradigms are becoming less capable of handling this challenge, and this has spurred interest in studying the concept of power system flexibility. Flexibility-based operational planning algorithms typically rely on robust optimization to offer guarantees on the ability of the operator to meet a wide array of possible scenarios. The main downside of these approaches is their conservative results whose operating costs and/or carbon footprint may be sub-economical. Such results come by because these approaches immunize their solutions for the required level of security against realizations of potential events within their uncertainty set. Moreover, these approaches also often ignore the inherent time and spatial couplings of wind and solar generation variability. To tackle this issue, this thesis proposes a modeling technique for uncertainty sets which is called the spatio-temporal flexibility requirement envelope. It reduces the over-conservatism of the robust solution by comprehensively capturing and representing the temporal trends and spatial correlation of multisite renewable generation and load demand. A mathematical program is also developed for applying this envelope to power system unit commitment and dynamic dispatch through projections of the spatio-temporal envelopes, where we mainly focus on microgrid type power systems. We illustrate the effectiveness of the spatio-temporal flexibility requirement envelopes through several case studies. Furthermore, flexibility-based operational planning approaches are usually formulated based on model predictive control paradigms, which requires the online solution of a mixed-integer optimization problem at each sampling time. Such approaches are not amenable to most remote microgrid and practical field microgrid implementations, where controls are typically implemented by industrial controllers with limited computational power and the dispatch algorithm faces stringent execution time for real time operation. To tackle this challenge, in this thesis we also develop rigorous machine learning approaches for simplifying and accelerating the flexibility-based microgrid dispatch algorithms, so that they can be implemented in practical settings for real time operation. The proposed machine learning approaches are able to preserve as much as possible the control performance obtained by full mixed-integer optimization. At the same time, they can provide feasible dispatch decisions. We conduct comprehensive performance evaluations to demonstrate the effectiveness of the proposed machine learning approaches"--
The global energy system is undergoing a profound transformation from a system based mainly on fossil fuels to a low-carbon one based on variable renewable energy (VRE), such as wind power and solar power, to achieve the 2050 Paris Agreement. By 2050, solar and wind power, with more than 14,500 GW installed capacity, would account for three-fifths of global electricity generation. This transformation comes with significant challenges since high VRE shares will greatly increase system flexibility requirements for balancing supply and demand. Accordingly, all sectors of the power system need to unlock further requisite flexibility through technology, business, and policy innovations, including power supply, transmission, distribution, storage, and demand.
Due to the inherent volatility and randomness, the increasing share of energy from renewable resources presents a challenge to the operation of multi-energy systems with heterogeneous energy carriers such as electricity, heat, hydrogen, etc. These factors will make the systems hard to adjust their supply and demand flexibly to maintain energy balance to ensure reliability. Further, this hinders the development of a low-carbon and economically viable energy system. By making full use of the synergistic interaction of generation, transmission, load demand, and energy storage, a three-fold approach focused on quantifying demand flexibility, evaluating supply capabilities, and enhancing resilience can unlock the flexibility potential across various sectors of new energy systems. This approach provides an effective means of facilitating the transition from conventional energy systems to low-carbon, clean-energy-oriented paradigms. However, huge challenges arising from renewable energy pose great obstacles to the aforementioned solution pathway. The main objectives of this Research Topic are: 1. Develop advanced carbon emission accounting and measurement techniques for emerging multi-energy systems 2. Design effective methods for predicting renewable electricity generation 3. Proposed efficient methods for quantitative assessment of uncertainty from renewables and loads 4. Put forward advanced evaluation, optimization, and planning strategies incorporating diverse flexibility resources 5. Design multifaceted market mechanisms and collaborative frameworks balancing economics and low carbon footprint 6. Develop operational control and resilience-enhancement techniques for distribution networks under large-scale distributed energy integration
With the development of renewable electricity and the expected important surpluses of production, how can the use of hydrogen improve the green energy portfolio? Power-to-Gas covers the production of hydrogen through electrolysis and its storage or conversion in another form (gas, chemicals or fuels). It emphasises the need for new technologies with global energy consumption, markets, and logistics concepts. Pilot projects around the world are discussed as well as how policy and economics influence the real use of these energy harvesting and conversion technologies.
Increased production of energy from renewable sources leads to a need for both new and enhanced capacities for energy transmission and intermediate storage. The book first compares different available storage options and then introduces the power-to-gas concept in a comprehensive overview of the technology. The state of the art, advancements, and future requirements for both water electrolysis and methanation are described. The integration of renewable hydrogen and methane into the gas grid is discussed in terms of the necessary technological measures to be taken. Because the power-to-gas system is very flexible, providing numerous specific applications for different targets within the energy sector, possible business models are presented on the basis of various process chains taking into account different plant scales and operating scenarios. The influence of the scale and the type of the integration of the technology into the existing energy network is highlighted with an emphasis on economic consequences. Finally, legal aspects of the operation and integration of the power-to-gas system are discussed.
Overview of how decisions by China on climate, energy, and environmental policy will influence the country's capacity to decarbonize.
This book focuses on the interaction between different energy vectors, that is, between electrical, thermal, gas, and transportation systems, with the purpose of optimizing the planning and operation of future energy systems. More and more renewable energy is integrated into the electrical system, and to optimize its usage and ensure that its full production can be hosted and utilized, the power system has to be controlled in a more flexible manner. In order not to overload the electrical distribution grids, the new large loads have to be controlled using demand response, perchance through a hierarchical control set-up where some controls are dependent on price signals from the spot and balancing markets. In addition, by performing local real-time control and coordination based on local voltage or system frequency measurements, the grid hosting limits are not violated.
Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use in Energy Modeling quantifies key trends and drivers of energy technologies deployed in the energy transition. It uses the experience curve tool to show how future cost reductions and cumulative deployment of these technologies may shape the future mix of the electricity, heat and transport sectors. The book explores experience curves in detail, including possible pitfalls, and demonstrates how to quantify the 'quality' of experience curves. It discusses how this tool is implemented in models and addresses methodological challenges and solutions. For each technology, current market trends, past cost reductions and underlying drivers, available experience curves, and future prospects are considered. Electricity, heat and transport sector models are explored in-depth to show how the future deployment of these technologies--and their associated costs--determine whether ambitious decarbonization climate targets can be reached - and at what costs. The book also addresses lessons and recommendations for policymakers, industry and academics, including key technologies requiring further policy support, and what scientific knowledge gaps remain for future research. Provides a comprehensive overview of trends and drivers for major energy technologies expected to play a role in the energy transition Delivers data on cost trends, helping readers gain insights on how competitive energy technologies may become, and why Reviews the use of learning curves in environmental impacts for lifecycle assessments and energy modeling Features social learning for cost modeling and technology diffusion, including where consumer preferences play a major role
The energy landscape is shifting toward renewable energy sources to mitigate climate change and reduce dependence on fossil fuels. The integration of renewable energy sources into the power grid presents various challenges, including uncertainty and variability of renewable energy sources, grid stability, and management of energy storage. Power system operation and optimization play a crucial role in managing the energy supply-demand balance, reducing operational costs, and improving the reliability of the power system. This call for papers aims to bring together the latest research and practical applications related to power system operation and optimization in the context of high penetration of renewable energy sources. We welcome contributions from researchers and practitioners from a broad range of disciplines to shed light on the challenges and opportunities associated with renewable energy integration in power systems. The objective of this Research Topic is to explore the latest advances in power system operation and optimization with a focus on the high penetration of renewable energy sources. We invite potential authors to submit articles for publication on the Research Topic of Frontiers in Energy Research on Power System Operation and Optimization Considering the High Penetration of Renewable Energy.
Building Energy Flexibility and Demand Management looks at the high penetration of intermittent renewable energy sources and the need for increased flexibility. Ensuring electrical power systems adapt to dynamic energy demand and supply conditions, the book supports the transition to a renewable energy future with current fluctuating power generation. By facilitating the penetration of renewable energy sources into the building sector and balancing electricity supply with demand in real-time, this book will provide fundamental concepts, theories, and methods to understand, quantify, design and optimize building energy flexibility. In addition, the book also provides case studies with emerging technologies to enhance building energy flexibility and demonstrate how demand management strategies can utilize energy flexibility for demand reduction and load shifting. It will be useful for all those researchers and engineers working in flexible energy systems and advanced demand side management strategies. Focuses on how renewable energy and storage technologies can be appropriately designed and optimized to increase building energy flexibility Discusses how building energy flexibility can contribute to reduced operating costs and grid optimization Details how to effectively implement building energy flexibility for demand response, peak demand reduction and peak load shifting