Download Free Flat Space Cosmology Book in PDF and EPUB Free Download. You can read online Flat Space Cosmology and write the review.

This compilation based upon recent peer-reviewed journal publications encapsulates how the Flat Space Cosmology model (FSC) has become the primary competitor to the inflationary standard model of cosmology. New ideas concerning black holes, dark energy and dark matter are presented and shown to correlate extremely well with astronomical observations. Anyone who follows the fast-changing science of cosmology, has an interest in the latest developments, and would like to know how it is that our universe appears to follow equations one would ordinarily expect for a time-reversed black hole (!), may find this book to be fascinating. Cosmology is the study of how the universe has changed over the great span of time (roughly 14 billion years). Later centuries will look back upon the period from 1990-2030 as a ‘Golden Age’ of theoretical and observational cosmology. It is highly likely that we are on the verge of a deeper understanding of the most mysterious energy (‘dark energy’) and matter (‘dark matter’) comprising the majority of energy and matter in the universe. Some of the material presented in this book is on the cutting edge of dark energy and dark matter theoretical work. This book summarizes, for the first time, the groundbreaking publications of two cosmologists, one from the United States and the other from India, from 2015 thru 2020. During this highly productive period, the authors stealthily published their papers in six different peer-reviewed scientific journals, so that the model could be quietly explored in all aspects before bringing it all together in a single book. This is that book!
This text explains special relativity and the basics of general relativity from a geometric viewpoint. Space-time geometry is emphasised throughout, and up-to-date information is provided on black holes, gravitational collapse, and cosmology.
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
This is a provocative account of the astounding new answers to the most basic philosophical question: Where did the universe come from and how will it end?
A substantial update of this award-winning and highly regarded cosmology textbook, for advanced undergraduates in physics and astronomy.
Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
The cutting-edge science that is taking the measure of the universe The Little Book of Cosmology provides a breathtaking look at our universe on the grandest scales imaginable. Written by one of the world's leading experimental cosmologists, this short but deeply insightful book describes what scientists are revealing through precise measurements of the faint thermal afterglow of the Big Bang—known as the cosmic microwave background, or CMB—and how their findings are transforming our view of the cosmos. Blending the latest findings in cosmology with essential concepts from physics, Lyman Page first helps readers to grasp the sheer enormity of the universe, explaining how to understand the history of its formation and evolution in space and time. Then he sheds light on how spatial variations in the CMB formed, how they reveal the age, size, and geometry of the universe, and how they offer a blueprint for the formation of cosmic structure. Not only does Page explain current observations and measurements, he describes how they can be woven together into a unified picture to form the Standard Model of Cosmology. Yet much remains unknown, and this incisive book also describes the search for ever deeper knowledge at the field's frontiers—from quests to understand the nature of neutrinos and dark energy to investigations into the physics of the very early universe.
Maintaining the standard of excellence set by the previous edition, this textbook covers the basic geometry of two- and three-dimensional spaces Written by a master expositor, leading researcher in the field, and MacArthur Fellow, it includes experiments to determine the true shape of the universe and contains illustrated examples and engaging exercises that teach mind-expanding ideas in an intuitive and informal way. Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.
Advances made by physicists in understanding matter, space, and time and by astronomers in understanding the universe as a whole have closely intertwined the question being asked about the universe at its two extremesâ€"the very large and the very small. This report identifies 11 key questions that have a good chance to be answered in the next decade. It urges that a new research strategy be created that brings to bear the techniques of both astronomy and sub-atomic physics in a cross-disciplinary way to address these questions. The report presents seven recommendations to facilitate the necessary research and development coordination. These recommendations identify key priorities for future scientific projects critical for realizing these scientific opportunities.
In Miletus, about 550 B.C., together with our world-picture cosmology was born. This book tells the story. In Part One the reader is introduced in the archaic world-picture of a flat earth with the cupola of the celestial vault onto which the celestial bodies are attached. One of the subjects treated in that context is the riddle of the tilted celestial axis. This part also contains an extensive chapter on archaic astronomical instruments. Part Two shows how Anaximander (610-547 B.C.) blew up this archaic world-picture and replaced it by a new one that is essentially still ours. He taught that the celestial bodies orbit at different distances and that the earth floats unsupported in space. This makes him the founding father of cosmology. Part Three discusses topics that completed the new picture described by Anaximander. Special attention is paid to the confrontation between Anaxagoras and Aristotle on the question whether the earth is flat or spherical, and on the battle between Aristotle and Heraclides Ponticus on the question whether the universe is finite or infinite.