Download Free Flash Smelting Book in PDF and EPUB Free Download. You can read online Flash Smelting and write the review.

Flash Smelting: Analysis, Control and Optimization deals with the analysis, control, and optimization of flash smelting. This book explores flash smelting in general and Outokumpu and Inco flash smelting in particular, and also presents a mathematical description for the flash smelting process. A set of mass and heat balance equations that can be used to describe steady state smelting under autogenous or nearautogenous smelting conditions is developed. This text has 20 chapters and begins with an overview of flash smelting and its products; the main raw materials of copper flash smelting; chemical reactions in the flash furnace; impurities in the concentrates that are fed to the flash furnace; and the operation of industrial flash furnaces. Attention then turns to Outokumpu flash smelting, Inço flash smelting, and mathematical representation of flash smelting. The chapters that follow focus on the effects of blast preheat on flash smelting; the combustion of fossil fuel in the flash furnace; and the effect of matte grade on the fossil fuel, industrial oxygen, and blast preheat requirements of flash smelting. Equations are used to determine the effects of such factors as concentrate composition, blast temperature, and dust carryout, and as the basis for optimizing and controlling the flash smelting process. This book will be of interest to both mathematicians and metallurgists.
This new edition has been extensively revised and updated since the 3rd edition published in 1994. It contains an even greater depth of industrial information, focussing on how copper metal is extracted from ore and scrap, and how this extraction could be made more efficient. Modern high intensity smelting processes are presented in detail, specifically flash, Contop, Isasmelt, Noranda, Teniente and direct-to-blister smelting. Considerable attention is paid to the control of SO2 emissions and manufacture of H2SO4. Recent developments in electrorefining, particularly stainless steel cathode technology are examined. Leaching, solvent extraction and electrowinning are evaluated together with their impact upon optimizing mineral resource utilization. The book demonstrates how recycling of copper and copper alloy scrap is an important source of copper and copper alloys. Copper quality control is also discussed and the book incorporates an important section on extraction economics. Each chapter is followed by a summary of concepts previously described and offers suggested further reading and references.
William G.I. Davenport
"Simulation and Optimization of Furnaces and Kilns for Nonferrous Metallurgical Engineering" is based on advanced theories and research methods for fluid flow, mass and heat transfer, and fuel combustion. It introduces a hologram simulation and optimization methods for fluid field, temperature field, concentration field, and electro-magnetic field in various kinds of furnaces and kilns. Practical examples and a detailed introduction to methods for simulation and optimization of complex systems are included as well. These new methods have brought significant economic benefits to the industries involved. The book is intended for researchers and technical experts in metallurgical engineering, materials engineering, power and thermal energy engineering, chemical engineering, and mechanical engineering. Chi Mei, Jiemin Zhou, Xiaoqi Peng, Naijun Zhou and Ping Zhou are all professors at School of Energy Science and Engineering, Central South University, Changsha, Hunan Province, China.
This book describes the phases for innovative metallurgical process development, from concept to commercialization. Key features of the book include: • Need for process innovation • Selection and optimization of process steps • Determination of the commercial feasibility of a process including engineering and equipment selection • Determination of the environmental footprint of a process • Case-study examples of innovative process development
The symposium brings together papers by industrial users of oxygen, major oxygen producers, engineering firms and leading experts in the field. It covers recent development in oxygen technology - both in application and technology. Both pyrometallurgical and hydrometallurgical applications are discussed, and O2 production technologies feature the cryogenic process together with several alternative novel methods. Established and new emerging processes are featured, and increased process efficiencies, higher throughputs and reduced energy consumption are among the objectives of the symposium.
Rather than simply describing the processes and reactions involved in metal extraction, this book concentrates on fundamental principles to give readers an understanding of the possibilities for future developments in this field. It includes a review of the basics of thermodynamics, kinetics and engineering principles that have special importance for extractive metallurgy, to ensure that readers have the background necessary for maximum achievement. The various metallurgical unit processes (such as roasting, reduction, smelting and electrolysis) are illustrated by existing techniques for the extraction of the most common metals. Each chapter includes a bibliography of recommended reading, to aid in further study. The appendices include tables and graphs of thermodynamic qualities for most substances of metallurgical importance; these are ideal for calculating heat (enthalpy) balances and chemical equilibrium constants. SI Units are used consistently throughout the text.
Proceedings of a symposium sponsored by the Hydrometallurgy and Electrometallurgy Committee and the Materials Characterization Committee of the Extraction and Processing Division of TMS (The Minerals, Metals & Materials Society) Held during the TMS 2012 Annual Meeting & Exhibition Orlando, Florida, USA March 11-15, 2012
Treatise on Process Metallurgy: Volume Four, Industrial Production provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products. In these fully updated volumes, coverage is expanded into four volumes, including Process Fundamentals, encompassing process fundamentals, structure and properties of matter; thermodynamic aspects of process metallurgy, and rate phenomena in process metallurgy; Processing Phenomena, encompassing interfacial phenomena in high temperature metallurgy, metallurgical process phenomena, and metallurgical process technology; Metallurgical Processes, encompassing mineral processing, aqueous processing, electrochemical material and energy processes, and iron and steel technology, non-ferrous process principles and production technologies, and more. The work distills the combined academic experience from the principal editor and the multidisciplinary four-member editorial board. Provides the entire breadth of process metallurgy in a single work Includes in-depth knowledge in all key areas of process metallurgy Approaches the topic from an interdisciplinary perspective, providing broad range coverage on topics