Download Free Flames And Explosions Book in PDF and EPUB Free Download. You can read online Flames And Explosions and write the review.

Combustion, Flames, and Explosions of Gases, Second Edition focuses on the processes, methodologies, and reactions involved in combustion phenomena. The publication first offers information on theoretical foundations, reaction between hydrogen and oxygen, and reaction between carbon monoxide and oxygen. Discussions focus on the fundamentals of reaction kinetics, elementary and complex reactions in gases, thermal reaction, and combined hydrogen-carbon monoxide-oxygen reaction. The text then elaborates on the reaction between hydrocarbons and oxygen and combustion waves in laminar flow. The manuscript tackles combustion waves in turbulent flow and air entrainment and burning of jets of fuel gases. Topics include effect of turbulence spectrum and turbulent wrinkling on combustion wave propagation; ignition of high-velocity streams by hot solid bodies; burners with primary air entrainment; and description of jet flames. The book then takes a look at detonation waves in gases; emission spectra, ionization, and electric-field effects in flames; and methods of flame photography and pressure recording. The publication is a valuable reference for readers interested in combustion phenomena.
Written by an engineer for engineers, this book is both training manual and on-going reference, bringing together all the different facets of the complex processes that must be in place to minimize the risk to people, plant and the environment from fires, explosions, vapour releases and oil spills. Fully compliant with international regulatory requirements, relatively compact but comprehensive in its coverage, engineers, safety professionals and concerned company management will buy this book to capitalize on the author's life-long expertise. This is the only book focusing specifically on oil and gas and related chemical facilities. This new edition includes updates on management practices, lessons learned from recent incidents, and new material on chemical processes, hazards and risk reviews (e.g. CHAZOP). Latest technology on fireproofing, fire and gas detection systems and applications is also covered. An introductory chapter on the philosophy of protection principles along with fundamental background material on the properties of the chemicals concerned and their behaviours under industrial conditions, combined with a detailed section on modern risk analysis techniques makes this book essential reading for students and professionals following Industrial Safety, Chemical Process Safety and Fire Protection Engineering courses. - A practical, results-oriented manual for practicing engineers, bringing protection principles and chemistry together with modern risk analysis techniques - Specific focus on oil and gas and related chemical facilities, making it comprehensive and compact - Includes the latest best practice guidance, as well as lessons learned from recent incidents
Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion. This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics.
Dust Explosion Dynamics focuses on the combustion science that governs the behavior of the three primary hazards of combustible dust: dust explosions, flash fires, and smoldering. It explores the use of fundamental principles to evaluate the magnitude of combustible dust hazards in a variety of settings. Models are developed to describe dust combustion phenomena using the principles of thermodynamics, transport phenomena, and chemical kinetics. Simple, tractable models are described first and compared with experimental data, followed by more sophisticated models to help with future challenges. Dr. Ogle introduces the reader to just enough combustion science so that they may read, interpret, and use the scientific literature published on combustible dusts. This introductory text is intended to be a practical guide to the application of combustible dust models, suitable for both students and experienced engineers. It will help you to describe the dynamics of explosions and fires involving dust and evaluate their consequences which in turn will help you prevent damage to property, injury and loss of life from combustible dust accidents. - Demonstrates how the fundamental principles of combustion science can be applied to understand the ignition, propagation, and extinction of dust explosions - Explores fundamental concepts through model-building and comparisons with empirical data - Provides detailed examples to give a thorough insight into the hazards of combustible dust as well as an introduction to relevant scientific literature
Unfortunately, dust explosions are common and costly in a wide array of industries such as petrochemical, food, paper and pharmaceutical. It is imperative that practical and theoretical knowledge of the origin, development, prevention and mitigation of dust explosions is imparted to the responsible safety manager. The material in this book offers an up to date evaluation of prevalent activities, testing methods, design measures and safe operating techniques. Also provided is a detailed and comprehensive critique of all the significant phases relating to the hazard and control of a dust explosion. An invaluable reference work for industry, safety consultants and students. - A completely new chapter on design of electrical equipment to be used in areas containing combustible/explosible dust - A substantially extended and re-organized final review chapter, containing nearly 400 new literature references from the years 1997-2002 - Extensive cross-referencing from the original chapters 1-7 to the corresponding sections of the expanded review chapter
The four companion volumes on Dynamics of Deflagrations and Reactive Systems and Dynamics of Detonations and Explosions present 91 of the149 papers given at the Twelfth International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) held at the University of Michigan in Ann Arbor during July 1989. Four volumes: Dynamics of Deflagrations and Reactive Systems: Flames (Volume 131) and Dynamics of Deflagrations and Reactive Systems: Heterogeneous Combustion (Volume 132) span a broad area, encompassing the processes of coupling the exothermic energy release with the fluid dynamics occurring in any combustion process. Dynamics of Detonations and Explosions: Detonations (Volume 133) and Dynamics of Detonations and Explosions: Explosion Phenomena (Volume 134) principally address the rate processes of energy deposition in a compressible medium and the concurrent nonsteady flow as it typically occurs in explosion phenomena. In this volume, Dynamics of Detonations and Explosions: Detonations, the papers have been arranged into chapters on gaseous detonations, detonation initiation and transmission, nonideal detonations and boundary effects, and multiphase detonations. Although the brevity of this preface does not permit the editors to do justice to all papers, we offer the following highlights of some of the especially noteworthy contributions.
b="" The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.
A New York Times Bestseller • A Read with Jenna Today Show Book Club Pick! Named a Best Book of the Year by The New York Times Book Review, The Washington Post, People, Entertainment Weekly, USA Today, TIME, The A.V. Club, Buzzfeed, and PopSugar “I can’t believe how good this book is.... It’s wholly original. It’s also perfect.... Wilson writes with such a light touch.... The brilliance of the novel [is] that it distracts you with these weirdo characters and mesmerizing and funny sentences and then hits you in a way you didn’t see coming. You’re laughing so hard you don’t even realize that you’ve suddenly caught fire.” —Taffy Brodesser-Akner, author of Fleishman is in Trouble, New York Times Book Review From the New York Times bestselling author of The Family Fang, a moving and uproarious novel about a woman who finds meaning in her life when she begins caring for two children with a remarkable ability. Lillian and Madison were unlikely roommates and yet inseparable friends at their elite boarding school. But then Lillian had to leave the school unexpectedly in the wake of a scandal and they’ve barely spoken since. Until now, when Lillian gets a letter from Madison pleading for her help. Madison’s twin stepkids are moving in with her family and she wants Lillian to be their caretaker. However, there’s a catch: the twins spontaneously combust when they get agitated, flames igniting from their skin in a startling but beautiful way. Lillian is convinced Madison is pulling her leg, but it’s the truth. Thinking of her dead-end life at home, the life that has consistently disappointed her, Lillian figures she has nothing to lose. Over the course of one humid, demanding summer, Lillian and the twins learn to trust each other—and stay cool—while also staying out of the way of Madison’s buttoned-up politician husband. Surprised by her own ingenuity yet unused to the intense feelings of protectiveness she feels for them, Lillian ultimately begins to accept that she needs these strange children as much as they need her—urgently and fiercely. Couldn’t this be the start of the amazing life she’d always hoped for? With white-hot wit and a big, tender heart, Kevin Wilson has written his best book yet—a most unusual story of parental love.
Today's risk analysis is a very challenging field, and a solid understanding of the calculations procedure associated with it is essential for anyone involved. Fires, Explosions, and Toxic Gas Dispersions: Effects Calculation and Risk Analysis provides an overview of the methods used to assess the risk of fires, explosions, and toxic gas dispersion