Download Free Fixed Point Theorems With Applications To Economics And Game Theory Book in PDF and EPUB Free Download. You can read online Fixed Point Theorems With Applications To Economics And Game Theory and write the review.

This book explores fixed point theorems and its uses in economics, co-operative and noncooperative games.
1. Introduction. 1.1. Mathematics is language. 1.2. Notes on some mathematical tools in this book. 1.3. Basic mathematical concepts and definitions -- 2. Fixed-point theorems. 2.1. Classical results and basic extensions. 2.2. Convexity and duality for general spaces. 2.3. Extension of classical results to general spaces -- 3. Nash equilibrium and abstract economy. 3.1. Multi-agent product settings for games. 3.2. Nash equilibrium. 3.3. Abstract economy -- 4. Gale-Nikaido-Debreu's theorem. 4.1. Gale-Nikaido-Debreu's theorem. 4.2. Market equilibria in general vector spaces. 4.3. Demand-supply coincidence in general spaces -- 5. General economic equilibrium. 5.1. General preferences and basic existence theorems. 5.2. Pareto optimal allocations. 5.3. Existence of general equilibrium -- 6. The C̮ech type homology theory and fixed points. 6.1. Basic concepts in algebraic topology. 6.2. Vietoris-Begle mapping and local connectedness. 6.3. Nikaido's analogue of Sperner's lemma. 6.4. Eilenberg-Montgomery's theorem -- 7. Convex structure and fixed-point index. 7.1. Lefschetz's fixed-point theorem and its extensions. 7.2. Cohomology theory for general spaces. 7.3. Dual-system structure and differentiability. 7.4. Linear Approximation for Isolated Fixed Points. 7.5. Indices for compact set of fixed points -- 8. Applications to related topics. 8.1. KKM, KKMS, and core existence. 8.2. Eaves' theorem. 8.3. Fan-Browder's coincidence theorem. 8.4. L-majorized mappings. 8.5. Variational inequality problem. 8.6. Equilibrium with cooperative concepts. 8.7. System of inequalities and affine transformations -- 9. Mathematics and social science. 9.1. Basic concepts in axiomatic set theory. 9.2. Individuals and rationality. 9.3. Society and values -- 10. Concluding discussions. 10.1. Fixed points and economic equilibria. 10.2. Rationality and fixed-point views of the world
This book develops the central aspect of fixed point theory – the topological fixed point index – to maximal generality, emphasizing correspondences and other aspects of the theory that are of special interest to economics. Numerous topological consequences are presented, along with important implications for dynamical systems. The book assumes the reader has no mathematical knowledge beyond that which is familiar to all theoretical economists. In addition to making the material available to a broad audience, avoiding algebraic topology results in more geometric and intuitive proofs. Graduate students and researchers in economics, and related fields in mathematics and computer science, will benefit from this book, both as a useful reference and as a well-written rigorous exposition of foundational mathematics. Numerous problems sketch key results from a wide variety of topics in theoretical economics, making the book an outstanding text for advanced graduate courses in economics and related disciplines.
This book addresses fixed point theory, a fascinating and far-reaching field with applications in several areas of mathematics. The content is divided into two main parts. The first, which is more theoretical, develops the main abstract theorems on the existence and uniqueness of fixed points of maps. In turn, the second part focuses on applications, covering a large variety of significant results ranging from ordinary differential equations in Banach spaces, to partial differential equations, operator theory, functional analysis, measure theory, and game theory. A final section containing 50 problems, many of which include helpful hints, rounds out the coverage. Intended for Master’s and PhD students in Mathematics or, more generally, mathematically oriented subjects, the book is designed to be largely self-contained, although some mathematical background is needed: readers should be familiar with measure theory, Banach and Hilbert spaces, locally convex topological vector spaces and, in general, with linear functional analysis.
Mathematical economics and game theory approached with the fundamental mathematical toolbox of nonlinear functional analysis are the central themes of this text. Both optimization and equilibrium theories are covered in full detail. The book's central application is the fundamental economic problem of allocating scarce resources among competing agents, which leads to considerations of the interrelated applications in game theory and the theory of optimization. Mathematicians, mathematical economists, and operations research specialists will find that it provides a solid foundation in nonlinear functional analysis. This text begins by developing linear and convex analysis in the context of optimization theory. The treatment includes results on the existence and stability of solutions to optimization problems as well as an introduction to duality theory. The second part explores a number of topics in game theory and mathematical economics, including two-person games, which provide the framework to study theorems of nonlinear analysis. The text concludes with an introduction to non-linear analysis and optimal control theory, including an array of fixed point and subjectivity theorems that offer powerful tools in proving existence theorems.
The aim of this volume is to make available to a large audience recent material in nonlinear functional analysis that has not been covered in book format before. Here, several topics of current and growing interest are systematically presented, such as fixed point theory, best approximation, the KKM-map principle, and results related to optimization theory, variational inequalities and complementarity problems. Illustrations of suitable applications are given, the links between results in various fields of research are highlighted, and an up-to-date bibliography is included to assist readers in further studies. Audience: This book will be of interest to graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations and expansions, convex sets and related geometric topics and game theory.
We live in a highly connected world with multiple self-interested agents interacting and myriad opportunities for conflict and cooperation. The goal of game theory is to understand these opportunities. This book presents a rigorous introduction to the mathematics of game theory without losing sight of the joy of the subject. This is done by focusing on theoretical highlights (e.g., at least six Nobel Prize winning results are developed from scratch) and by presenting exciting connections of game theory to other fields such as computer science (algorithmic game theory), economics (auctions and matching markets), social choice (voting theory), biology (signaling and evolutionary stability), and learning theory. Both classical topics, such as zero-sum games, and modern topics, such as sponsored search auctions, are covered. Along the way, beautiful mathematical tools used in game theory are introduced, including convexity, fixed-point theorems, and probabilistic arguments. The book is appropriate for a first course in game theory at either the undergraduate or graduate level, whether in mathematics, economics, computer science, or statistics. The importance of game-theoretic thinking transcends the academic setting—for every action we take, we must consider not only its direct effects, but also how it influences the incentives of others.
Computing Equilibria and Fixed Points is devoted to the computation of equilibria, fixed points and stationary points. This volume is written with three goals in mind: (i) To give a comprehensive introduction to fixed point methods and to the definition and construction of Gröbner bases; (ii) To discuss several interesting applications of these methods in the fields of general equilibrium theory, game theory, mathematical programming, algebra and symbolic computation; (iii) To introduce several advanced fixed point and stationary point theorems. These methods and topics should be of interest not only to economists and game theorists concerned with the computation and existence of equilibrium outcomes in economic models and cooperative and non-cooperative games, but also to applied mathematicians, computer scientists and engineers dealing with models of highly nonlinear systems of equations (or polynomial equations).
This book collects chapters on contemporary topics on metric fixed point theory and its applications in science, engineering, fractals, and behavioral sciences. Chapters contributed by renowned researchers from across the world, this book includes several useful tools and techniques for the development of skills and expertise in the area. The book presents the study of common fixed points in a generalized metric space and fixed point results with applications in various modular metric spaces. New insight into parametric metric spaces as well as study of variational inequalities and variational control problems have been included.