Download Free Fixed Point Theorem For Neutrosophic Triplet Partial Metric Space Book in PDF and EPUB Free Download. You can read online Fixed Point Theorem For Neutrosophic Triplet Partial Metric Space and write the review.

Neutrosphic triplet is a new theory in neutrosophy. In a neutrosophic triplet set, there is a neutral element and antielement for each element. In this study, the concept of neutrosophic triplet partial metric space (NTPMS) is given and the properties of NTPMS are studied.
In this chapter, study the notion of neutrosophic triplet partial v-generalized metric space. Then, we give some definitions and examples for neutrosophic triplet partial v-generalized metric space and obtain some properties and prove these properties. Furthermore, we show that neutrosophic triplet partial v-generalized metric space is different from neutrosophic triplet v-generalized metric space and neutrosophic triplet partial metric space.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.
The concept of neutrosophic triplet firstly introduced by F. Smarandache and M. Ali. This notion (neutrosophic triplet) is a group of three elements that satisfy certain properties with some binary operation. These neutrosophic triplets highly depends on the proposed binary operation. In this article, we make some observations concerning Neutrosophic triplet metric space (NTMS), Neutrosophic triplet partial metric space (NTPMS), Neutrosophic triplet-b-metric space (NT-b-MS) introduced by Sahin et al. and put our observation on the definitions defined in these articles. Moreover, inspired by Ur Rahaman and Sahin et al. further we define a new topological construction named as Neutrosophic Triplet quasi-dislocated b-metric space (NT-qdb-MS) and study some properties of NT-qdb-MS. Furthermore using this construction, we establish some fixed point theorems in the context of NT-qdb-MS using graph. For the validity of our results, we also provide an example.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)HyperAlgebra, Neutrosophic Triplet Partial Bipolar Metric Spaces, The Neutrosophic Triplet of BI-algebras.
Contributors to current issue (listed in papers’ order): Atena Tahmasbpour Meikola, Arif Mehmood, Wadood Ullah, Said Broumi, Muhammad Imran Khan, Humera Qureshi, Muhammad Ibrar Abbas, Humaira Kalsoom, Fawad Nadeem, T. Chalapathi, L. Madhavi, R. Suresh, S. Palaniammal, Nivetha Martin, Florentin Smarandache, S. A. Edalatpanah, Rafif Alhabib, A. A. Salama, Memet Şahin, Abdullah Kargın, Murat Yücel, Dimacha Dwibrang Mwchahary, Bhimraj Basumatary, R. S. Alghamdi, N. O. Alshehri, Shigui Du, Rui Yong, Jun Ye, Vasantha Kandasamy, Ilanthenral Kandasamy, Muhammad Saeed, Muhammad Saqlain, Asad Mehmood, Khushbakht Naseer, Sonia Yaqoob, Sudipta Gayen, Sripati Jha, Manoranjan Kumar Singh, Ranjan Kumar, Huseyin Kamaci, Shawkat Alkhazaleh, Anas Al-Masarwah, Abd Ghafur Ahmad, Merve Sena Uz, Akbar Rezaei, Mohamed Grida, Rehab Mohamed, Abdelnaser H. Zaid.
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.