Download Free Fission Factor Book in PDF and EPUB Free Download. You can read online Fission Factor and write the review.

The Revised Edition Retains The Essential Theories Of Nuclear Structure And Stability, Radioactivity And The Principles Of Fission, Fusion And Breeder Reactors Of The Earlier Editions. The Preparation Of The More Commonly Used Radioisotopes And Their Uses As Tracers In Research, Medicine, Agriculture And Industry Are Described. The Book Also Covers The Elements Of Radiation And Radiochemistry Illustrated With Additional Examples. The Section On Mossbauer Effect Is Retained. The Chapter On The Detection And Measurement Of Radioactivity Is Revised To Include Thermo Luminescence And Cerenkov Detectors.New Additions In The Present Edition Include A Whole Chapter On The Separation And Uses Of Stable And Radioactive Isotopes Needed In Bulk Amounts In The Atomic Age. How An Extension Of Basic Principles Of Nuclear Magnetic Resonance (Nmr) Has Led To The Sophisticated Magnetic Resonance Imaging (Mri), The Latest Diagnostic Tool In Medicine Is Discussed Lucidly. Another Chapter Is Added Entitled A Roll-Call Of Elementary Particles , Wherein The Baffling Properties Of Quarks And Gluons, With Their Esoteric Flavours, Colours, Strangeness And Charm Are Reviewed Showing How Their Scientific Characteristics Tend To Merge In Philosophy.The Book Meets The Needs Of Honours And Post-Graduate Students Offering Nuclear, Radiation And Radiochemistry.
Nuclear engineering plays an important role in various industrial, health care, and energy processes. Modern physics has generated its fundamental principles. A growing number of students and practicing engineers need updated material to access the technical language and content of nuclear principles. "Nuclear Principles in Engineering, Second Edition" is written for students, engineers, physicians and scientists who need up-to-date information in basic nuclear concepts and calculation methods using numerous examples and illustrative computer application areas. This new edition features a modern graphical interpretation of the phenomena described in the book fused with the results from research and new applications of nuclear engineering, including but not limited to nuclear engineering, power engineering, homeland security, health physics, radiation treatment and imaging, radiation shielding systems, aerospace and propulsion engineering, and power production propulsion.
This edition builds on earlier traditions in providing broad subject-area coverage, application of theory to practical aspects of commercial nuclear power, and use of instructional objectives. Like the first edition, it focuses on what distinguishes nuclear engineering from the other engineering disciplines. However, this edition includes reorganization and overall update of descriptions of reactor designs and fuel-cycle steps, and more emphasis on reactor safety, especially related to technical and management lessons learned from the TMI-2 and Chernobyl - 4 accidents.
Since the dawn of nuclear energy to recent events in the nuclear industry...if you have ever been curious about nuclear power, then this is the book for you. From the people who work in the nuclear industry to the nuclear groups that help guide the nuclear industry....this book is dedicated to all those that have brought this industry to where it is today. Nuclear power is technology that can bring electricity to every household... but we must first make sure everyone knows what the facts are...read this book.
The unique and practical Materials Handbook (third edition) provides quick and easy access to the physical and chemical properties of very many classes of materials. Its coverage has been expanded to include whole new families of materials such as minor metals, ferroalloys, nuclear materials, food, natural oils, fats, resins, and waxes. Many of the existing families—notably the metals, gases, liquids, minerals, rocks, soils, polymers, and fuels—are broadened and refined with new material and up-to-date information. Several of the larger tables of data are expanded and new ones added. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, each of twenty-four classes of materials receives attention in its own chapter. The health and safety issues connected with the use and handling of industrial materials are included. Detailed appendices provide additional information on subjects as diverse as crystallography, spectroscopy, thermochemical data, analytical chemistry, corrosion resistance, and economic data for industrial and hazardous materials. Specific further reading sections and a general bibliography round out this comprehensive guide. The index and tabular format of the book makes light work of extracting what the reader needs to know from the wealth of factual information within these covers. Dr. François Cardarelli has spent many years compiling and editing materials data. His professional expertise and experience combine to make this handbook an indispensable reference tool for scientists and engineers working in numerous fields ranging from chemical to nuclear engineering. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, materials are classified as follows. ferrous metals and their alloys; ferroalloys; common nonferrous metals; less common metals; minor metals; semiconductors and superconductors; magnetic materials; insulators and dielectrics; miscellaneous electrical materials; ceramics, refractories and glasses; polymers and elastomers; minerals, ores and gemstones; rocks and meteorites; soils and fertilizers; construction materials; timbers and woods; fuels, propellants and explosives; composite materials; gases; liquids; food, oils, resin and waxes; nuclear materials. food materials
Clinical Bioenergetics: From Pathophysiology to Clinical Translation provides recent developments surrounding the etiology and pathophysiology of inherited and acquired energy-delated disorders. Across 40 chapters, world leaders in bioenergetics and mitochondrial medicine discuss novel methodologies designed to identify deficiencies in cellular bioenergetics, as well as the safety and efficacy of emerging management strategies to address poor cellular bioenergetics. Topics discussed include the omics landscape of impaired mitochondrial bioenergetics, hormones, tissue bioenergetics and metabolism in humans. Disease-specific case studies, modes of analysis in clinical bioenergetics, and therapeutic opportunities for impaired bioenergetics, addressing both known treatment pathways and future directions for research, are discussed in-depth. Diseases and Disorders examined include brain injury, chronic fatigue syndrome, psychiatric disorders, pulmonary fibrosis, neurodegenerative disorders, heart failure, chronic kidney disease, obesity, and insulin resistance, among others. - Provides a thorough discussion of foundational aspects of bioenergetics and disease, modes of analysis, and treatments for impaired bioenergetics - Discusses the role of bioenergetics and treatment pathways in brain injury, chronic fatigue syndrome, psychiatric disorders, pulmonary fibrosis, neurodegenerative disorders, heart failure, chronic kidney disease, obesity, and insulin resistance, among other diseases and disorders - Features chapter contributions from international leaders in translational bioenergetics research and clinical practice
INTRODUCTION TO NUCLEAR REACTOR PHYSICS is the most comprehensive, modern and readable textbook for this course/module. It explains reactors, fuel cycles, radioisotopes, radioactive materials, design, and operation. Chain reaction and fission reactor concepts are presented, plus advanced coverage including neutron diffusion theory. The diffusion equation, Fisk’s Law, and steady state/time-dependent reactor behavior. Numerical and analytical solutions are also covered. The text has full color illustrations throughout, and a wide range of student learning features.
Fundamentals of Nuclear Reactor Physics offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation . It provides a clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release. It provides in-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution. It includes ample worked-out examples and over 100 end-of-chapter problems. Engineering students will find this applications-oriented approach, with many worked-out examples, more accessible and more meaningful as they aspire to become future nuclear engineers. - A clear, general overview of atomic physics from the standpoint of reactor functionality and design, including the sequence of fission reactions and their energy release - In-depth discussion of neutron reactions, including neutron kinetics and the neutron energy spectrum, as well as neutron spatial distribution - Ample worked-out examples and over 100 end-of-chapter problems - Full Solutions Manual
Electrons, Neutrons and Protons in Engineering focuses on the engineering significance of electrons, neutrons, and protons. The emphasis is on engineering materials and processes whose characteristics may be explained by considering the behavior of small particles when grouped into systems such as nuclei, atoms, gases, and crystals. This volume is comprised of 25 chapters and begins with an overview of the relation between science and engineering, followed by a discussion on the microscopic and macroscopic domains of matter. The next chapter presents the basic relations involving mechanics, electricity and magnetism, light, heat, and related subjects which are most significant in the study of modern physical science. Subsequent chapters explore the nucleus and structure of an atom; the concept of binding forces and binding energy; the configuration of the system of the electrons surrounding the atomic nucleus; physical and chemical properties of atoms; and the structure of gases and solids. The energy levels of groups of particles are also considered, along with the Schrödinger equation and electrical conduction through gases and solids. The remaining chapters are devoted to nuclear fission, nuclear reactors, and radiation. This book will appeal to physicists, engineers, and mathematicians as well as students and researchers in those fields.