Download Free Fish Physiology Homeostasis And Toxicology Of Non Essential Metals Book in PDF and EPUB Free Download. You can read online Fish Physiology Homeostasis And Toxicology Of Non Essential Metals and write the review.

Homeostasis and Toxicology of Non-Essential Metals synthesizes the explosion of new information on the molecular, cellular, and organismal handling of metals in fish in the past 15 years. These elements are no longer viewed by fish physiologists as "heavy metals" that kill fish by suffocation, but rather as interesting moieties that enter and leave fish by specific pathways, which are subject to physiological regulation. The metals featured in this volume are those about which there has been most public and scientific concern, and therefore are those most widely studied by fish researchers. Metals such as Ag, Al, Cd, Pb, Hg, As, Sr, and U have no known nutritive function in fish at present, but are toxic at fairly low levels.
Homeostasis and Toxicology of Essential Metals synthesizes the explosion of new information on the molecular, cellular, and organismal handling of metals in fish in the past 15 years. These elements are no longer viewed by fish physiologists as "heavy metals" that kill fish by suffocation, but rather as interesting moieties that enter and leave fish by specific pathways, which are subject to physiological regulation. The metals featured in this volume are those about which there has been most public and scientific concern, and therefore are those most widely studied by fish researchers. Metals such as Cu, Zn, Fe, Ni, Co, Se, Mo and Cr are either proven to be or are strongly suspected to be essential in trace amounts, yet are toxic in higher doses. The companion volume, Homeostasis and Toxicology of Non-Essential Metals, Volume 31B, covers metals that have no known nutritive function in fish at present, but which are toxic at fairly low levels, such as Ag, Al, Cd, Pb, Hg, As, Sr, and U. In addition, three chapters in Volumes 31A and 31B on Basic Principles (Chapter 1, 31A), Field Studies and Ecological Integration (Chapter 9, 31A) and Modeling the Physiology and Toxicology of Metals (Chapter 9, 31B) act as integrative summaries and make these two volumes a vital set for readers. All major essential metals of interest are covered in metal-specific chapters Each metal-specific chapter is written by fish physiologists/toxicologists who are recognized authorities for that metal A common format is featured throughout this two volume edition
Homeostasis and Toxicology of Non-Essential Metals synthesizes the explosion of new information on the molecular, cellular, and organismal handling of metals in fish in the past 15 years. These elements are no longer viewed by fish physiologists as "heavy metals" that kill fish by suffocation, but rather as interesting moieties that enter and leave fish by specific pathways, which are subject to physiological regulation. The metals featured in this volume are those about which there has been most public and scientific concern, and therefore are those most widely studied by fish researchers. Metals such as Ag, Al, Cd, Pb, Hg, As, Sr, and U have no known nutritive function in fish at present, but are toxic at fairly low levels. The companion volume, Homeostasis and Toxicology of Essential Metals, Volume 31A, covers metals that are either proven to be or are strongly suspected to be essential in trace amounts, yet are toxic in higher doses. Metals such as Cu, Zn, Fe, Ni, Co, Se, Mo and Cr. In addition, three chapters in Volumes 31A and 31B on Basic Principles (Chapter 1, 31A), Field Studies and Ecological Integration (Chapter 9, 31A) and Modeling the Physiology and Toxicology of Metals (Chapter 9, 31B) act as integrative summaries and make these two volumes a vital set for readers. - All major essential metals of interest are covered in metal-specific chapters - Each metal-specific chapter is written by fish physiologists/toxicologists who are recognized authorities for that metal - A common format is featured throughout this two volume edition
Homeostasis and Toxicology of Essential Metals synthesizes the explosion of new information on the molecular, cellular, and organismal handling of metals in fish in the past 15 years. These elements are no longer viewed by fish physiologists as "heavy metals" that kill fish by suffocation, but rather as interesting moieties that enter and leave fish by specific pathways, which are subject to physiological regulation. The metals featured in this volume are those about which there has been most public and scientific concern, and therefore are those most widely studied by fish researchers. Metals such as Cu, Zn, Fe, Ni, Co, Se, Mo and Cr are either proven to be or are strongly suspected to be essential in trace amounts, yet are toxic in higher doses. The companion volume, Homeostasis and Toxicology of Non-Essential Metals, Volume 31B, covers metals that have no known nutritive function in fish at present, but which are toxic at fairly low levels, such as Ag, Al, Cd, Pb, Hg, As, Sr, and U. In addition, three chapters in Volumes 31A and 31B on Basic Principles (Chapter 1, 31A), Field Studies and Ecological Integration (Chapter 9, 31A) and Modeling the Physiology and Toxicology of Metals (Chapter 9, 31B) act as integrative summaries and make these two volumes a vital set for readers. - All major essential metals of interest are covered in metal-specific chapters - Each metal-specific chapter is written by fish physiologists/toxicologists who are recognized authorities for that metal - A common format is featured throughout this two volume edition
Homeostasis and Toxicology of Essential Metals synthesizes the explosion of new information on the molecular, cellular, and organismal handling of metals in fish in the past 15 years. These elements are no longer viewed by fish physiologists as "heavy metals" that kill fish by suffocation, but rather as interesting moieties that enter and leave fish by specific pathways, which are subject to physiological regulation. The metals featured in this volume are those about which there has been most public and scientific concern, and therefore are those most widely studied by fish researchers. Metals such as Cu, Zn, Fe, Ni, Co, Se, Mo and Cr are either proven to be or are strongly suspected to be essential in trace amounts, yet are toxic in higher doses.
Essential Fish Biology provides an introductory overview of the functional biology of fish and how this may be affected by the widely contrasting habitat conditions within the aquatic environment. It describes the recent advances in comparative animal physiology which have greatly influenced our understanding of fish function as well as generating questions that have yet to be resolved. Fish taxa represent the largest number of vertebrates,with over 25,000 extant species. However, much of our knowledge, apart from taxonomy and habitat descriptions, has been based on relatively few of them, usually those which live in fresh water and/or are ofcommercial interest. Unfortunately there has also been a tendency to base our interpretation of fish physiology on that of mammalian systems, as well as to rely on a few type species of fish. This accessible textbook will redress the balance by using examples of fish from a wide range of species and habitats, emphasizing diversity as well as recognizing shared attributes with other vertebrates.
Fish Physiology: Organic Chemical Toxicology of Fishes discusses the different types of organic chemical contaminants and their respective toxic effects in fish. The book also covers the detection of dissolved organic compounds and methods to assess organic toxicity. Substances addressed in this book include organometallics, hydrocarbons, endocrine disrupting compounds (EDCs), insecticides, herbicides, and pharmaceuticals. Fish are exposed to an ever-increasing array of organic chemicals that find their way into rivers and oceans. Some of these compounds are no longer being produced but nonetheless persist within the environment (persistent organic pollutants, or POPs). The exposure of fish to toxic organic compounds has potential impact on human, fish, and ecosystem health. Yet the regulations that govern environmental water quality vary worldwide, and compliance is never complete. This book provides a crucial resource on these issues for researchers in zoology, fish physiology, and related fields; applied researchers in environmental monitoring, conservation biology, and toxicology; and university-level students and instructors in these areas. - Organized by type of toxic organic chemicals - Includes metals, POPs, EDCs, herbicides, insecticides, and pharmaceuticals - Measures toxicity in a variety of ways aside from lethality - Probes the toxic effects of compound mixtures as well as single pollutants
This text coherently links biochemical fundamentals and mechanism with economic and societal problems of environmental pollution. It addresses interdisciplinary topics such as regulatory problems, sampling and quantification, model organisms as well as a philosophical perspectives on the Anthropocene. Case studies from industry and exercises illustrate current issues and discuss future aspects.
Reviews of Environmental Contamination and Toxicology attempts to provide concise, critical reviews of timely advances, philosophy and significant areas of accomplished or needed endeavor in the total field of xenobiotics, in any segment of the environment, as well as toxicological implications.
The series "Fish Physiology" recently celebrated its 50th Anniversary. In total, the editors of the series have produced a total of 47 books (several volumes have two books) that contain almost 500 chapters since the inaugural volume published in 1969. The content of the "Fish Physiology" volumes has evolved over time. The initial volumes were devoted to understanding the basic mechanisms and principles of fish physiology, with a focus on a few model species and some application to natural environmental conditions. Then, as the field better understood mechanisms, the approach was broadened to not only delve deeper into system physiology (e.g., chapters in early volumes were expanded to become books), but interspecific differences in physiology were explored, permitting a more evolutionary framework. Finally, as interspecific physiological mechanisms were further resolved, it became possible to discuss physiology in light of a changing world. Thus, physiology can now inform on conservation, sustainability and management, as exemplified with the most recent volumes. This anniversary issue celebrates the series by highlighting some of the very important early work in the field that was published in the Series. In particular, we wished to (re)introduce new researchers to this research that has stood the test of time and that shaped the field. Each re-published chapter is preceded by a short review written by experts in the field to provide an overview/introduction of each selected chapter, discuss what is particularly noteworthy or important in the particular chapter, and discuss why in their opinion this chapter has become a classic in its own right and how it has inspired the field of fish physiology today? - Reviews written by experts in the field of some of the early influential chapters from the series "Fish Physiology" - Highlights how some of this early work in the series "Fish Physiology" has stood the test of time and shaped the field today - Reintroduces some of the early influential work in the series "Fish Physiology" to new researchers in the field