Download Free First Steps In Modal Logic Book in PDF and EPUB Free Download. You can read online First Steps In Modal Logic and write the review.

This is a first course in propositional modal logic, suitable for mathematicians, computer scientists and philosophers. Emphasis is placed on semantic aspects, in the form of labelled transition structures, rather than on proof theory.
This book offers a state-of-the-art introduction to the basic techniques and results of neighborhood semantics for modal logic. In addition to presenting the relevant technical background, it highlights both the pitfalls and potential uses of neighborhood models – an interesting class of mathematical structures that were originally introduced to provide a semantics for weak systems of modal logic (the so-called non-normal modal logics). In addition, the book discusses a broad range of topics, including standard modal logic results (i.e., completeness, decidability and definability); bisimulations for neighborhood models and other model-theoretic constructions; comparisons with other semantics for modal logic (e.g., relational models, topological models, plausibility models); neighborhood semantics for first-order modal logic, applications in game theory (coalitional logic and game logic); applications in epistemic logic (logics of evidence and belief); and non-normal modal logics with dynamic modalities. The book can be used as the primary text for seminars on philosophical logic focused on non-normal modal logics; as a supplemental text for courses on modal logic, logic in AI, or philosophical logic (either at the undergraduate or graduate level); or as the primary source for researchers interested in learning about the uses of neighborhood semantics in philosophical logic and game theory.
This book treats modal logic as a theory, with several subtheories, such as completeness theory, correspondence theory, duality theory and transfer theory and is intended as a course in modal logic for students who have had prior contact with modal logic and who wish to study it more deeply. It presupposes training in mathematical or logic. Very little specific knowledge is presupposed, most results which are needed are proved in this book.
This is an advanced 2001 textbook on modal logic, a field which caught the attention of computer scientists in the late 1970s. Researchers in areas ranging from economics to computational linguistics have since realised its worth. The book is for novices and for more experienced readers, with two distinct tracks clearly signposted at the start of each chapter. The development is mathematical; prior acquaintance with first-order logic and its semantics is assumed, and familiarity with the basic mathematical notions of set theory is required. The authors focus on the use of modal languages as tools to analyze the properties of relational structures, including their algorithmic and algebraic aspects, and applications to issues in logic and computer science such as completeness, computability and complexity are considered. Three appendices supply basic background information and numerous exercises are provided. Ideal for anyone wanting to learn modern modal logic.
In this work, the author provides an introduction to the field of modal logic, outlining its major ideas and emploring the numerous ways in which various academic fields have adopted it.
A textbook on modal and other intensional logics. It covers normal modal logics, relational semantics, axiomatic and tableaux proof systems, intuitionistic logic, and counterfactual conditionals. It is based on the Open Logic Project and available for free download at openlogicproject.org.
The Unprovability of Consistency is concerned with connections between two branches of logic: proof theory and modal logic. Modal logic is the study of the principles that govern the concepts of necessity and possibility; proof theory is, in part, the study of those that govern provability and consistency. In this book, George Boolos looks at the principles of provability from the standpoint of modal logic. In doing so, he provides two perspectives on a debate in modal logic that has persisted for at least thirty years between the followers of C. I. Lewis and W. V. O. Quine. The author employs semantic methods developed by Saul Kripke in his analysis of modal logical systems. The book will be of interest to advanced undergraduate and graduate students in logic, mathematics and philosophy, as well as to specialists in those fields.
Timothy Williamson gives an original and provocative treatment of deep metaphysical questions about existence, contingency, and change, using the latest resources of quantified modal logic. Contrary to the widespread assumption that logic and metaphysics are disjoint, he argues that modal logic provides a structural core for metaphysics.
Boolos, a pre-eminent philosopher of mathematics, investigates the relationship between provability and modal logic.
This is a thorough treatment of first-order modal logic. The book covers such issues as quantification, equality (including a treatment of Frege's morning star/evening star puzzle), the notion of existence, non-rigid constants and function symbols, predicate abstraction, the distinction between nonexistence and nondesignation, and definite descriptions, borrowing from both Fregean and Russellian paradigms.