Download Free First Draft Of A Report On The Edvac Book in PDF and EPUB Free Download. You can read online First Draft Of A Report On The Edvac and write the review.

This book provides an overview of the confluence of ideas in Turing’s era and work and examines the impact of his work on mathematical logic and theoretical computer science. It combines contributions by well-known scientists on the history and philosophy of computability theory as well as on generalised Turing computability. By looking at the roots and at the philosophical and technical influence of Turing’s work, it is possible to gather new perspectives and new research topics which might be considered as a continuation of Turing’s working ideas well into the 21st century.
Exploring a vast array of topics related to computation, Computing: A Historical and Technical Perspective covers the historical and technical foundation of ancient and modern-day computing. The book starts with the earliest references to counting by humans, introduces various number systems, and discusses mathematics in early civilizations. It guides readers all the way through the latest advances in computer science, such as the design and analysis of computer algorithms. Through historical accounts, brief technical explanations, and examples, the book answers a host of questions, including: Why do humans count differently from the way current electronic computers do? Why are there 24 hours in a day, 60 minutes in an hour, etc.? Who invented numbers, when were they invented, and why are there different kinds? How do secret writings and cryptography date back to ancient civilizations? Innumerable individuals from many cultures have contributed their talents and creativity to formulate what has become our mathematical and computing heritage. By bringing together the historical and technical aspects of computing, this book enables readers to gain a deep appreciation of the long evolutionary processes of the field developed over thousands of years. Suitable as a supplement in undergraduate courses, it provides a self-contained historical reference source for anyone interested in this important and evolving field.
Today, Fuzzy Set Theory is the core discipline of so-called ‘soft’ computing, and provides new impetus for research in the field of artificial intelligence. In this fascinating book, the history of Fuzzy Set Theory and the ways it was first used are incorporated into the history of 20th century science and technology. Influences from philosophy, system theory and cybernetics stemming from the earliest part of the 20th century are considered alongside those of communication and control theory from mid-century.
This work is a historical and philosophical study of the programming work carried out by John von Neumann in the period 1945-8. At the heart of the book is an examination of a manuscript featuring the earliest known surviving example of von Neumann’s coding, a routine written in 1945 to ‘mesh’ two sequences of data and intended to be part of a larger program implementing the algorithm now known as mergesort. The text of the manuscript itself, along with a preliminary document describing the code he used to write this program, are reproduced as appendices. The program is approached in three chapters describing the historical background to von Neumann’s work, the significance of the sorting application itself, and the development of the EDVAC, the machine for which the program was written. The subsequent chapters widen the focus again, discussing the subsequent evolution of the program and the crucial topic of subroutines, before concluding by situating von Neumann’s work in a number of wider contexts. The book also offers a unifying philosophical interpretation of von Neumann’s approach to coding.
Offers a theoretical and practical guide to the communication and navigation of autonomous mobile robots and multi-robot systems This book covers the methods and algorithms for the navigation, motion planning, and control of mobile robots acting individually and in groups. It addresses methods of positioning in global and local coordinates systems, off-line and on-line path-planning, sensing and sensors fusion, algorithms of obstacle avoidance, swarming techniques and cooperative behavior. The book includes ready-to-use algorithms, numerical examples and simulations, which can be directly implemented in both simple and advanced mobile robots, and is accompanied by a website hosting codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming consists of four main parts. The first looks at the models and algorithms of navigation and motion planning in global coordinates systems with complete information about the robot’s location and velocity. The second part considers the motion of the robots in the potential field, which is defined by the environmental states of the robot's expectations and knowledge. The robot's motion in the unknown environments and the corresponding tasks of environment mapping using sensed information is covered in the third part. The fourth part deals with the multi-robot systems and swarm dynamics in two and three dimensions. Provides a self-contained, theoretical guide to understanding mobile robot control and navigation Features implementable algorithms, numerical examples, and simulations Includes coverage of models of motion in global and local coordinates systems with and without direct communication between the robots Supplemented by a companion website offering codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming is an excellent tool for researchers, lecturers, senior undergraduate and graduate students, and engineers dealing with mobile robots and related issues.
The 1980s saw constant reports of an information revolution. This book, first published in 1986, challenges this view. It argues that the information revolution is an illusion, a rhetorical gambit, an expression of profound historical ignorance, and a movement dedicated to purveying misunderstanding and disseminating disinformation. In this historically based attack on the information revolution, Professor Winston takes a had look at the four central information technologies – telephones, television, computers and satellites. He describes how these technologies were created and diffused, showing that instead of revolution we just have ‘business as usual’. He formulates a ‘law’ of the suppression of radical potential – a law which states that new telecommunication technologies are introduced into society only insofar as their disruptive potential is contained. Despite the so-called information revolution, the major institutions of society remain unchanged, and most of us remain in total ignorance of the history of technology.
In 1942, Lt. Herman H. Goldstine, a former mathematics professor, was stationed at the Moore School of Electrical Engineering at the University of Pennsylvania. It was there that he assisted in the creation of the ENIAC, the first electronic digital computer. The ENIAC was operational in 1945, but plans for a new computer were already underway. The principal source of ideas for the new computer was John von Neumann, who became Goldstine's chief collaborator. Together they developed EDVAC, successor to ENIAC. After World War II, at the Institute for Advanced Study, they built what was to become the prototype of the present-day computer. Herman Goldstine writes as both historian and scientist in this first examination of the development of computing machinery, from the seventeenth century through the early 1950s. His personal involvement lends a special authenticity to his narrative, as he sprinkles anecdotes and stories liberally through his text.
William Aspray provides the first broad and detailed account of von Neumann's many different contributions to computing. John von Neumann (1903-1957) was unquestionably one of the most brilliant scientists of the twentieth century. He made major contributions to quantum mechanics and mathematical physics and in 1943 began a new and all-too-short career in computer science. William Aspray provides the first broad and detailed account of von Neumann's many different contributions to computing. These, Aspray reveals, extended far beyond his well-known work in the design and construction of computer systems to include important scientific applications, the revival of numerical analysis, and the creation of a theory of computing.Aspray points out that from the beginning von Neumann took a wider and more theoretical view than other computer pioneers. In the now famous EDVAC report of 1945, von Neumann clearly stated the idea of a stored program that resides in the computer's memory along with the data it was to operate on. This stored program computer was described in terms of idealized neurons, highlighting the analogy between the digital computer and the human brain. Aspray describes von Neumann's development during the next decade, and almost entirely alone, of a theory of complicated information processing systems, or automata, and the introduction of themes such as learning, reliability of systems with unreliable components, self-replication, and the importance of memory and storage capacity in biological nervous systems; many of these themes remain at the heart of current investigations in parallel or neurocomputing.Aspray allows the record to speak for itself. He unravels an intricate sequence of stories generated by von Neumann's work and brings into focus the interplay of personalities centered about von Neumann. He documents the complex interactions of science, the military, and business and shows how progress in applied mathematics was intertwined with that in computers. William Aspray is Director of the Center for the History of Electrical Engineering at The Institute of Electrical and Electronics Engineers.
This volume provides a history of the computer which now comes properly up to the ubiquitous age, with new chapters that look at globalization, platformitization and regulation, allowing readers to engage with the more recent takeover by computers in their historical perspective. With the growing ubiquity of computers, the subject is one of interest to many students and this will feature in history of science and technology courses, and world history courses as well as ones specifically on computing. Books on the history of computing tend to be quite technically or business focused, this covers the social and cultural history as well.