Download Free Fire Resistant Geopolymers Based On Several Clays Mixtures Book in PDF and EPUB Free Download. You can read online Fire Resistant Geopolymers Based On Several Clays Mixtures and write the review.

Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.
New two-dimensional materials based on clays and clay minerals are attracting attention for their outstanding properties that make them useful as hosts or supporting matrixes in applications such as pharmaceuticals, tissue engineering, environmental remediation, biosensors, filtration, wound dressings, drug delivery, and more. This book is a comprehensive overview of clay science and technology, focusing on synthesis, characterization, simulation, and applications. Chapters cover such topics as polymer–clay nanocomposites, the structure and properties of different clays, the use of clays for environmental remediation, and much more.
A geopolymer is a solid aluminosilicate material usually formed by alkali hydroxide or alkali silicate activation of a solid precursor such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of reduced-CO2 construction materials as an alternative to Portland-based cements. Geopolymers: structure, processing, properties and industrial applications reviews the latest research on and applications of these highly important materials.Part one discusses the synthesis and characterisation of geopolymers with chapters on topics such as fly ash chemistry and inorganic polymer cements, geopolymer precursor design, nanostructure/microstructure of metakaolin and fly ash geopolymers, and geopolymer synthesis kinetics. Part two reviews the manufacture and properties of geopolymers including accelerated ageing of geopolymers, chemical durability, engineering properties of geopolymer concrete, producing fire and heat-resistant geopolymers, utilisation of mining wastes and thermal properties of geopolymers. Part three covers applications of geopolymers with coverage of topics such as commercialisation of geopolymers for construction, as well as applications in waste management.With its distinguished editors and international team of contributors, Geopolymers: structure, processing, properties and industrial applications is a standard reference for scientists and engineers in industry and the academic sector, including practitioners in the cement and concrete industry as well as those involved in waste reduction and disposal. - Discusses the synthesis and characterisation of geopolymers with chapters covering fly ash chemistry and inorganic polymer cements - Assesses the application and commercialisation of geopolymers with particular focus on applications in waste management - Reviews the latest research on and applications of these highly important materials
The book covers the topic of geopolymers, in particular it highlights the relationship between structural differences as a result of variations during the geopolymer synthesis and its physical and chemical properties. In particular, the book describes the optimization of the thermal properties of geopolymers by adding micro-structural modifiers such as fibres and/or fillers into the geopolymer matrix. The range of fibres and fillers used in geopolymers, their impact on the microstructure and thermal properties is described in great detail. The book content will appeal to researchers, scientists, or engineers who are interested in geopolymer science and technology and its industrial applications.
Geopolymers presents a complex and interdisciplinary study in the fields of physics, chemistry, materials science, and civil engineering on oxide materials based on mineral wastes, known as geopolymers. Considering the ideal requirements for developing eco-friendly materials for industrial applications, this book describes how to design and develop different types of geopolymers that use mineral wastes or natural aluminosilicates as raw materials. It contains advanced knowledge and information regarding geopolymer manufacturing, development, characterization, and applications in soil stabilization, civil engineering, or ceramics. This book is relevant for undergraduate and graduate students conducting fundamental and applied research in the fields of materials engineering, ceramics engineering, and water processing.
This is a State of the Art Report resulting from the work of RILEM Technical Committee 224-AAM in the period 2007-2013. The Report summarises research to date in the area of alkali-activated binders and concretes, with a particular focus on the following areas: binder design and characterisation, durability testing, commercialisation, standardisation, and providing a historical context for this rapidly-growing research field.
What can be done about the major concerns of our Global Economy on energy, global warming, sustainable development, user-friendly processes, and green chemistry? Here is an important contribution to the mastering of these phenomena today. Written by Joseph Davidovits, the inventor and founder of geopolymer science, it is an introduction to the subject for the newcomers, students, engineers and professionals. You will find science, chemistry, formulas and very practical information (including patents' excerpts) covering: - The mineral polymer concept: silicones and geopolymers, - Macromolecular structure of natural silicates and aluminosilicates, - Scientific Tools, X-rays, FTIR, NMR, - The synthesis of mineral geopolymers, Poly(siloxonate) and polysilicate, soluble silicate, Chemistry of (Na, K)-oligo-sialates: hydrous alumino-silicate gels and zeolites, Kaolinite / Hydrosodalite-based geopolymer, Metakaolin MK-750-based geopolymer, Calcium-based geopolymer, Rock-based geopolymer, Silica-based geopolymer, Fly ash-based geopolymer, Phosphate-based geopolymer, Organic-mineral geopolymer, - Properties: physical, chemical and long-term durability, - Applications: Quality controls, Development of user-friendly systems, Castable geopolymer, industrial and decorative applications, Geopolymer / fiber composites, Foamed geopolymer, Geopolymers in ceramic processing, Manufacture of geopolymer cement, Geopolymer concrete, Geopolymers in toxic and radioactive waste management. It is a textbook, a reference book instead of being a collection of scientific papers. Each chapter is followed by a bibliography of the relevant published literature including 80 patents, 125 tables, 363 figures, 560 references, 720 authors cited, representing the most up to date contributions of the scientific community. The industrial applications of geopolymers with engineering procedures and design of processes are also covered in this book
Selected, peer reviewed papers from the 2nd Malaysia-Indonesia Geopolymer Symposium, October 25-27, 2015, Surabaya, Indonesia